Patents by Inventor Marek Michalowski

Marek Michalowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11726448
    Abstract: This specification describes systems, methods, devices, and other techniques for planning workspaces for automated fabrication processes. A computing system facilitates planning by receiving a set of parameters for planning a layout of a workspace for an automated fabrication process, and generating a plurality of candidate workspace layouts, including selecting, for each candidate workspace layout, (i) one or more robots for performing tasks in the automated fabrication process and (ii) corresponding locations for the one or more robots within the workspace. The system determines an optimal workspace layout based on the plurality of candidate workspace layouts, generates a workspace layout specification for the optimal workspace layout, and provides the workspace layout specification to one or more second computing systems.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: August 15, 2023
    Assignee: Intrinsic Innovation LLC
    Inventors: Marek Michalowski, Michael Beardsworth
  • Patent number: 11256240
    Abstract: Disclosed herein is a worksite automation process that involves: generating a first sequence of tasks to build the product according to a model. The process further involves causing one or more robotic devices to build the product by beginning to execute the first sequence of tasks. Further, during the execution of the first sequence of tasks, performing a buildability analysis to determine a feasibility of completing the product by executing the first sequence of tasks. Based on the analysis, determining that it is not feasible to complete the product by executing the first sequence of tasks, and in response, generating a second sequence of tasks to complete the product according to the model. Then, causing the one or more robotic devices to continue building the product by beginning to execute the second sequence of tasks.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: February 22, 2022
    Assignee: Intrinsic Innovation LLC
    Inventors: Kendra Byrne, Eli Reekmans, Stoyan Gaydarov, Marek Michalowski, Michael Beardsworth, Ryan Butterfoss, Ytai Ben-Tsvi
  • Patent number: 11230016
    Abstract: In one aspect, a method is described. The method may include providing an end effector tool of a robotic device configured to perform a task on a work surface within a worksite coordinate frame. The method may further include providing first location data indicating a first location of the end effector tool with respect to the work surface, providing second location data indicating a second location of the end effector tool within the worksite coordinate frame, and providing third location data indicating a third location of the end effector tool within the worksite coordinate frame. The method may further include tracking the location of the end effector tool based on the first, second, and third location data, and, based on the tracked location of the tool, instructing the robotic device to manipulate the end effector tool to perform a task on the work surface.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: January 25, 2022
    Assignee: Intrinsic Innovation LLC
    Inventors: Jeff Linnell, Marek Michalowski, Anthony Sean Jules
  • Patent number: 11209798
    Abstract: This specification describes systems, methods, devices, and other techniques for planning workspaces for automated fabrication processes. A computing system facilitates planning by receiving a set of parameters for planning a layout of a workspace for an automated fabrication process, and generating a plurality of candidate workspace layouts, including selecting, for each candidate workspace layout, (i) one or more robots for performing tasks in the automated fabrication process and (ii) corresponding locations for the one or more robots within the workspace. The system determines an optimal workspace layout based on the plurality of candidate workspace layouts, generates a workspace layout specification for the optimal workspace layout, and provides the workspace layout specification to one or more second computing systems.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: December 28, 2021
    Assignee: Intrinsic Innovation LLC
    Inventors: Marek Michalowski, Michael Beardsworth
  • Patent number: 11040448
    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: June 22, 2021
    Assignee: X Development LLC
    Inventors: Eli Reekmans, Marek Michalowski, Michael Beardsworth
  • Patent number: 10987812
    Abstract: A robotic system includes end-effector(s) that combine a plurality of objects in a production process. The system includes sensor(s) that obtain measurement(s) relating to a combination of a first object and one or more other objects during the production process. The system includes a control system communicatively coupled to the sensor(s). The control system stores specifications relating to the combination of the plurality of objects. The control system receives the measurement(s) from the sensor(s), determines a difference based on the measurement(s) and the specifications, determines adjustment(s) to the production process based on the determined difference, and sends, for the end-effector(s), instruction(s) based on the specifications and the one or more adjustment(s). The end-effector(s) combine a second object with the first object and the one or more objects based on the specifications and the one or more adjustment(s).
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 27, 2021
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans, Matthew Bitterman, Michael Beardsworth
  • Patent number: 10967501
    Abstract: Example implementations may relate to providing a dynamic jig in a three-dimensional (3D) coordinate system. Specifically, a control system may (i) receive task data specifying a manipulation of one or more parts at a specified location; (ii) determine: (a) one or more work surfaces and (b) a first position of each of the one or more work surfaces, such that the one or more work surfaces collectively provide a jig to facilitate the specified manipulation of the parts; (iii) a plurality of guide end effectors that are positionable by one or more robotic devices such that the end effectors provide the work surfaces at the respectively determined first positions; and (iv) operate the one or more robotic devices to position the guide end effectors to provide the one or more work surfaces at the respectively determined first positions, thereby forming the jig from the one or more work surfaces.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: April 6, 2021
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Kendra Byrne, Brandon Kruysman, Eli Reekmans
  • Patent number: 10882181
    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: January 5, 2021
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans
  • Publication number: 20200218223
    Abstract: Example implementations relate to generating instructions for robotic tasks. A method may involve determining task information of a path-based task by an end-effector on an object, where the task information includes (i) at least one task parameter, and (ii) a nominal representation of the object. The method also involves based on the task information, determining one or more parametric instructions for the end-effector to perform the task, where the one or more parametric instructions indicate a toolpath for the end-effector to follow when performing the task. The method also involves generating, based on sensor data, an observed representation of the object, and comparing the observed and the nominal representations. The method further involves based on the comparison, mapping the parametric instructions to the observed representation of the object. The method yet further involves sending the mapped instructions to the end-effector to cause the robotic device to perform the task.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 9, 2020
    Inventors: Eli Reekmans, Marek Michalowski
  • Publication number: 20200174460
    Abstract: Disclosed herein is a worksite automation process that involves: generating a first sequence of tasks to build the product according to a model. The process further involves causing one or more robotic devices to build the product by beginning to execute the first sequence of tasks. Further, during the execution of the first sequence of tasks, performing a buildability analysis to determine a feasibility of completing the product by executing the first sequence of tasks. Based on the analysis, determining that it is not feasible to complete the product by executing the first sequence of tasks, and in response, generating a second sequence of tasks to complete the product according to the model. Then, causing the one or more robotic devices to continue building the product by beginning to execute the second sequence of tasks.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 4, 2020
    Inventors: Kendra Byrne, Eli Reekmans, Stoyan Gaydarov, Marek Michalowski, Michael Beardsworth, Ryan Butterfoss, Ytai Ben-Tsvi
  • Patent number: 10596703
    Abstract: The present application discloses implementations relate to automated generation of interlocking joint features. An example method involves obtaining a virtual model of an object. The virtual model specifies dimensions of a first element, dimensions of a second element, and a spatial relation between the first element and the second element that defines a joint angle. The example method also involves obtaining a relationship that correlates element dimensions and joint angles with cut dimensions. The example method further involves determining cut dimensions for the first element the second element based on the relationship, the dimensions of the first element, the dimensions of the second element, and the joint angle. Modifying the first element and the second element according to the cut dimensions produces interlockable features on the first element and the second element. Additionally, the method involves providing an output signal indicative of the cut dimensions.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: March 24, 2020
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman
  • Patent number: 10500732
    Abstract: In one aspect, a method is described. The method may include providing an end effector tool of a robotic device configured to perform a task on a work surface within a worksite coordinate frame. The method may further include providing first location data indicating a first location of the end effector tool with respect to the work surface, providing second location data indicating a second location of the end effector tool within the worksite coordinate frame, and providing third location data indicating a third location of the end effector tool within the worksite coordinate frame. The method may further include tracking the location of the end effector tool based on the first, second, and third location data, and, based on the tracked location of the tool, instructing the robotic device to manipulate the end effector tool to perform a task on the work surface.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: December 10, 2019
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Anthony Sean Jules
  • Publication number: 20190308321
    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.
    Type: Application
    Filed: April 24, 2019
    Publication date: October 10, 2019
    Inventors: Eli Reekmans, Marek Michalowski, Michael Beardsworth
  • Publication number: 20190184555
    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.
    Type: Application
    Filed: January 18, 2019
    Publication date: June 20, 2019
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans
  • Patent number: 10307908
    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 4, 2019
    Assignee: X Development LLC
    Inventors: Eli Reekmans, Marek Michalowski, Michael Beardsworth
  • Patent number: 10220511
    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: March 5, 2019
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans
  • Patent number: 10150213
    Abstract: Example implementations may relate to providing a dynamic jig in a three-dimensional (3D) coordinate system. Specifically, a control system may (i) receive task data specifying a manipulation of one or more parts at a specified location; (ii) determine: (a) one or more work surfaces and (b) a first position of each of the one or more work surfaces, such that the one or more work surfaces collectively provide a jig to facilitate the specified manipulation of the parts; (iii) a plurality of guide end effectors that are positionable by one or more robotic devices such that the end effectors provide the work surfaces at the respectively determined first positions; and (iv) operate the one or more robotic devices to position the guide end effectors to provide the one or more work surfaces at the respectively determined first positions, thereby forming the jig from the one or more work surfaces.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: December 11, 2018
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Kendra Byrne, Brandon Kruysman, Eli Reekmans
  • Publication number: 20180348730
    Abstract: Example implementations relate to generating instructions for robotic tasks. A method may involve determining task information of a path-based task by an end-effector on an object, where the task information includes (i) at least one task parameter, and (ii) a nominal representation of the object. The method also involves based on the task information, determining one or more parametric instructions for the end-effector to perform the task, where the one or more parametric instructions indicate a toolpath for the end-effector to follow when performing the task. The method also involves generating, based on sensor data, an observed representation of the object, and comparing the observed and the nominal representations. The method further involves based on the comparison, mapping the parametric instructions to the observed representation of the object. The method yet further involves sending the mapped instructions to the end-effector to cause the robotic device to perform the task.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 6, 2018
    Inventors: Eli Reekmans, Marek Michalowski
  • Publication number: 20180348742
    Abstract: Disclosed herein is a worksite automation process that involves: generating a first sequence of tasks to build the product according to a model. The process further involves causing one or more robotic devices to build the product by beginning to execute the first sequence of tasks. Further, during the execution of the first sequence of tasks, performing a buildability analysis to determine a feasibility of completing the product by executing the first sequence of tasks. Based on the analysis, determining that it is not feasible to complete the product by executing the first sequence of tasks, and in response, generating a second sequence of tasks to complete the product according to the model. Then, causing the one or more robotic devices to continue building the product by beginning to execute the second sequence of tasks.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 6, 2018
    Inventors: Kendra Byrne, Eli Reekmans, Stoyan Gaydarov, Marek Michalowski, Michael Beardsworth, Ryan Butterfoss, Ytai Ben-Tsvi
  • Publication number: 20180290305
    Abstract: Described herein are methods and systems to establish a pre-build relationship in a model that specifies a first parameter for a first feature of a structure and a second parameter for a second feature of the structure. In particular, a computing system may receive data specifying a pre-build relationship that defines a build value of the first parameter in terms of a post-build observed value of the second parameter. During production of the structure, the computing system may determine the post-build observed value of the second parameter and, based on the determined post-build observed value, may determine the build value of the first parameter in accordance with the pre-build relationship. After determining the build value, the computing system may then transmit, to a robotic system, an instruction associated with production of the first feature by the robotic system, with that instruction specifying the determined build value of the first parameter.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 11, 2018
    Inventors: Eli Reekmans, Marek Michalowski, Michael Beardsworth