Patents by Inventor Marek Uncovsky

Marek Uncovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230245850
    Abstract: Various approaches are provided for transferring samples within an inert gas environment to and from a beam system. In one example, a sample transfer capsule includes a container configured to store a sample during transport, wherein the container is adjustable between a closed configuration and an open configuration, an inert gas storage chamber coupled to the container and configured to store an inert gas, and a valve coupled to the inert gas storage chamber and the container and configured to selectively allow the inert gas to flow from the inert gas storage chamber to the container when the container is in the closed configuration. In this way, samples may be maintained in an inert gas environment during transport and while beam system vacuum chambers are vented, thereby reducing exposure of the samples and subsequently reducing the rate of a chemical reaction, such as oxidation or nitridation, of the samples.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: FEI Company
    Inventors: Libor Novák, Petr Glajc, Marek Uncovský
  • Patent number: 11335536
    Abstract: An embodiment of electron microscope system is described that comprises an electron column pole piece and a light guide assembly operatively coupled together. The light guide assembly also includes one or more detectors, and a mirror with a pressure limiting aperture through which an electron beam from an electron source passes. The mirror is also configured to reflect light, as well as to collect back scattered electrons and secondary electrons.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: May 17, 2022
    Assignee: FEI Company
    Inventors: Marek Uncovsky, Michal Geryk, Jan Lasko
  • Patent number: 10978272
    Abstract: The invention relates to a method of determining the thickness of a sample. According to this method, a diffraction pattern image of a sample of a first material is obtained. Said diffraction pattern image comprises at least image values representative for the diffraction pattern obtained for said sample. A slope of said image values is then determined. The slope is compared to a relation between the thickness of said first material and the slope of image value of a corresponding diffraction pattern image of said first material. The determined slope and said relation are used to determine the thickness of said sample.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: April 13, 2021
    Assignee: FEI Company
    Inventors: Tomas Vystavel, Pavel Stejskal, Marek Uncovsky
  • Publication number: 20210082659
    Abstract: An embodiment of electron microscope system is described that comprises an electron column pole piece and a light guide assembly operatively coupled together. The light guide assembly also includes one or more detectors, and a mirror with a pressure limiting aperture through which an electron beam from an electron source passes. The mirror is also configured to reflect light, as well as to collect back scattered electrons and secondary electrons.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 18, 2021
    Inventors: Marek Uncovsky, Michal Geryk, Jan Lasko
  • Publication number: 20200135427
    Abstract: The invention relates to a method of determining the thickness of a sample. According to this method, a diffraction pattern image of a sample of a first material is obtained. Said diffraction pattern image comprises at least image values representative for the diffraction pattern obtained for said sample. A slope of said image values is then determined. The slope is compared to a relation between the thickness of said first material and the slope of image value of a corresponding diffraction pattern image of said first material. The determined slope and said relation are used to determine the thickness of said sample.
    Type: Application
    Filed: September 23, 2019
    Publication date: April 30, 2020
    Applicant: FEI Company
    Inventors: Tomas Vystavel, Pavel Stejskal, Marek Uncovsky
  • Publication number: 20190393013
    Abstract: A charged particle imaging apparatus comprising: A specimen holder, for holding a specimen; A particle-optical column, for: Producing a plurality of charged particle beams, by directing a progenitor charged particle beam onto an aperture plate having a corresponding plurality of apertures within a footprint of the progenitor beam; Directing said beams toward said specimen, wherein: Said aperture plate comprises a plurality of different zones, which comprise mutually different aperture patterns, arranged within said progenitor beam footprint; The particle-optical column comprises a selector device, located downstream of said aperture plate, for selecting a beam array from a chosen one of said zones to be directed onto the specimen.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Applicant: FEI Company
    Inventors: Bohuslav Sed'a, Ali Mohammadi-Gheidari, Marek Uncovský
  • Publication number: 20180100815
    Abstract: A method of investigating a specimen using X-ray tomography, comprising (a) mounting the specimen to a specimen holder, (b) irradiating the specimen with a beam of X-rays along a first line of sight through the specimen, and (c) detecting a flux of X-rays transmitted through the specimen and forming a first image. Then (d) repeating the steps (b) and (c) for a series of different lines of sight through the specimen, thereby producing a corresponding series of images.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 12, 2018
    Applicant: FEI Company
    Inventors: Pavel Stejskal, Marek Uncovský, Tomás Vystavel, Alan Frank de Jong, Bart Buijsse, Pierre Bleuet
  • Publication number: 20180061613
    Abstract: A charged-particle microscope having a vacuum chamber comprises a specimen holder, a particle-optical column, a detector and an exchangeable column extending element. The specimen holder is for holding a specimen. The particle-optical column is for producing and directing a beam of charged particles along an axis so as to irradiate the specimen. The column has a terminal pole piece at an extremity facing the specimen holder. The detector is for detecting a flux of radiation emanating from the specimen in response to irradiation by the beam. The exchangeable column extending element is magnetically mounted on the pole piece in a space between the pole piece and the specimen holder. Methods of using the microscope are also disclosed.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 1, 2018
    Inventors: Bohuslav Sed'a, Lubomír Tuma, Petr Hlavenka, Marek Uncovský, Radovan Vasina, Jan Trojek, Mostafa Maazouz
  • Patent number: 9679741
    Abstract: An environmental cell for a charged particle beam system allows relative motion between the cell mounted on an X-Y stage and the optical axis of the focusing column, thereby eliminating the need for a sub-stage within the cell. A flexible cell configuration, such as a retractable lid, permits a variety of processes, including beam-induced and thermally-induced processes. Photoelectron yield spectroscopy performed in a charged particle beam system and using gas cascade amplification of the photoelectrons allows analysis of material in the cell and monitoring of processing in the cell. Luminescence analysis can be also performed using a retractable mirror.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: June 13, 2017
    Assignee: FEI Company
    Inventors: Libor Novak, Marek Uncovsky, Milos Toth, Martin Cafourek, William Parker, Marcus Straw, Mark Emerson
  • Publication number: 20170103868
    Abstract: A method of examining a specimen in a Charged Particle Microscope, comprising the following steps: Providing a specimen on a specimen holder; Heating the specimen to a temperature of at least 250° C.; Directing a beam of charged particles from a source through an illuminator so as to irradiate the specimen; Using a detector to detect a flux of electrons emanating from the specimen in response to said irradiation, wherein said detector comprises: A scintillator module, which produces photons in response to impingement by electrons in said flux; A photon sensor, for sensing said photons, and is configured to: Preferentially register a first category of photons, associated with impingement of electrons on said scintillator module; Selectively suppress a second category of photons, comprising thermal radiation from the heated specimen.
    Type: Application
    Filed: July 11, 2016
    Publication date: April 13, 2017
    Applicant: FEI Company
    Inventors: Libor Novak, Petr Hlavenka, Marek Uncovsky, Martin Cafourek
  • Publication number: 20160054240
    Abstract: The invention relates to a method of acquiring an Energy Backscattering Pattern image of a sample in a charged particle apparatus, the sample showing a flat surface, the charged particle apparatus equipped with an electron column for producing a finely focused electron beam, a position sensitive detector for detecting EBSP patterns, and a sample holder for holding and positioning the sample, the method comprising the steps of: Positioning the sample with respect to the electron beam, Directing the electron beam to an impact point on the sample, thereby causing backscattered electrons to irradiate the detector, and Acquiring the signal from the detector while the beam is kept stationary, in which The detector is equipped to selectively detect electrons with an energy above a predefined threshold, and The signal of the electrons with an energy above said threshold is used to form an EBSP image.
    Type: Application
    Filed: August 24, 2015
    Publication date: February 25, 2016
    Applicant: FEI Company
    Inventors: Marek Uncovský, Pavel Stejskal, Tomás Vystavel
  • Patent number: 9153416
    Abstract: A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: October 6, 2015
    Assignee: FEI Company
    Inventors: Petr Hlavenka, Marek Uncovsky
  • Publication number: 20140374593
    Abstract: A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 25, 2014
    Applicant: FEI Company
    Inventors: Petr Hlavenka, Marek Uncovsky
  • Patent number: 8735849
    Abstract: A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: May 27, 2014
    Assignee: FEI Company
    Inventors: Petr Hlavenka, Marek Uncovsky
  • Publication number: 20120205539
    Abstract: A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 16, 2012
    Applicant: FEI COMPANY
    Inventors: Petr Hlavenka, Marek Uncovsky
  • Publication number: 20120112062
    Abstract: An environmental cell for a charged particle beam system allows relative motion between the cell mounted on an X-Y stage and the optical axis of the focusing column, thereby eliminating the need for a sub-stage within the cell. A flexible cell configuration, such as a retractable lid, permits a variety of processes, including beam-induced and thermally-induced processes. Photon yield spectroscopy performed in a charged particle beam system and using gas cascade amplification of the photoelectrons allows analysis of material in the cell and monitoring of processing in the cell. Luminescence analysis can be also performed using a retractable minor.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: FEI COMPANY
    Inventors: Libor Novak, Marek Uncovsky, Milos Toth, Martin Cafourek, William Parker, Marcus Straw, Mark Emerson
  • Patent number: 7791020
    Abstract: A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 7, 2010
    Assignee: FEI Company
    Inventors: Marek Uncovsky, Milos Toth, William Ralph Knowles
  • Publication number: 20090242758
    Abstract: A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: FEI COMPANY
    Inventors: MAREK UNCOVSKY, MILOS TOTH, WILLIAM RALPH KNOWLES
  • Patent number: 7009187
    Abstract: A particle detector switchable from an ion detector to an electron detector includes an ion-to-electron converter and a scintillator detector. With one set of voltages on the components, the converter has minimal impact on the electron trajectories so the electrons are efficiently detected by the scintillator detector. With different voltage settings on the components, the detector can be operated in positive ion mode to collect positive ions with adequate efficiency for most FIB applications.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: March 7, 2006
    Assignee: FEI Company
    Inventors: Robert L. Gerlach, Mark W. Utlaut, Trevor Dingle, Marek Uncovsky
  • Publication number: 20040262531
    Abstract: A particle detector switchable from an ion detector to an electron detector includes an ion-to-electron converter and a scintillator detector. With one set of voltages on the components, the converter has minimal impact on the electron trajectories so the electrons are efficiently detected by the scintillator detector. With different voltage settings on the components, the detector can be operated in positive ion mode to collect positive ions with adequate efficiency for most FIB applications.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Robert L. Gerlach, Mark W. Utlaut, Trevor Dingle, Marek Uncovsky