Patents by Inventor Margaret C. Richards

Margaret C. Richards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10218196
    Abstract: A system of selecting charging modes for a rechargeable energy storage unit in an autonomous device includes a controller having a processor and tangible, non-transitory memory on which is recorded instructions. The controller is configured to determine availability of at least one charging station and at least one parking lot through a survey of local charging infrastructure and local parking infrastructure, respectively, within a predefined radius of the autonomous device. The controller is configured to determine if it is cost-effective during an excursion to incur a charging fee at the charging station or incur a parking fee at the parking lot. If it is cost-effective to incur the charging fee, then the controller is configured to selectively employ at least one of a plurality of charging modes, including an open-ended charging mode and a defined departure charging mode.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: February 26, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Brandon R. Jones, Ryan Ashby, Tony Wingett, Margaret C. Richards, Matthew S. Stout, Cody D. Berman
  • Publication number: 20190058342
    Abstract: A system of selecting charging modes for a rechargeable energy storage unit in an autonomous device includes a controller having a processor and tangible, non-transitory memory on which is recorded instructions. The controller is configured to determine availability of at least one charging station and at least one parking lot through a survey of local charging infrastructure and local parking infrastructure, respectively, within a predefined radius of the autonomous device. The controller is configured to determine if it is cost-effective during an excursion to incur a charging fee at the charging station or incur a parking fee at the parking lot. If it is cost-effective to incur the charging fee, then the controller is configured to selectively employ at least one of a plurality of charging modes, including an open-ended charging mode and a defined departure charging mode.
    Type: Application
    Filed: August 15, 2017
    Publication date: February 21, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon R. Jones, Ryan Ashby, Tony Wingett, Margaret C. Richards, Matthew S. Stout, Cody D. Berman
  • Patent number: 9630601
    Abstract: A method that compensates for fluid pressure variations in a vehicle brake system so that the fluid pressure, brake torque and/or brake force at the wheel more accurately reflects that requested by the driver. In an exemplary embodiment, the method determines the braking intent of the driver, determines a current stage of the braking event (e.g., an apply stage, release stage, etc.), uses the braking event stage and the driver braking intent to select a pressure compensation, and uses the pressure compensation to generate compensated brake command signals for operating the vehicle brake system. This method is well suited for use with brake-by-wire systems, such as an electrohydraulic braking (EHB) system.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 25, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jon K. Logan, Patrick J. Monsere, Margaret C. Richards, Jonathan King, Danny Y. Mui
  • Patent number: 8899033
    Abstract: A control system for evaluating a brake booster system includes an engine evaluation module that detects an engine off condition. A pressure evaluation module, during the engine off condition, monitors hydraulic brake line pressure, detects a change in brake booster pressure, and determines a brake booster vacuum decay rate based on the change in brake booster pressure. A fault reporting module detects a brake booster system fault based on the brake line pressure and the brake booster vacuum decay rate.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: December 2, 2014
    Inventors: Zhong Wang, Tony T. Hoang, Daryl A. Wilson, Margaret C. Richards, Lan Wang
  • Patent number: 8326509
    Abstract: A method that compensates for temperature-related effects in a vehicle brake system. According to one embodiment, the method determines the temperature of a brake pad, calculates a temperature-based modifier, and then uses the temperature-based modifier to adjust one or more brake command signals provided to the vehicle brake system so that they are compensated for temperature-related changes in the coefficient of friction (?) of the brake pad and rotor. The method may be used with brake-by-wire systems such as electrohydraulic braking (EHB) systems and electromechanical braking (EMB) systems.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Jon K. Logan, Patrick J. Monsere, Danny Y. Mui, Margaret C. Richards
  • Patent number: 8180545
    Abstract: A method for controlling braking in a vehicle having a brake pedal includes the steps of obtaining a first measure of braking intent based on movement of the brake pedal, obtaining a second measure of braking intent based on a force applied to the brake pedal, controlling the braking based on the first measure provided that a transition parameter is less than a first predetermined value, controlling the braking based on the second measure provided that the transition parameter is greater than a second predetermined value, and controlling the braking based on the first measure and the second measure provided that the transition parameter is greater than the first predetermined value and less than the second predetermined value.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 15, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Patrick J. Monsere, Jon K. Logan, Danny Y. Mui, Margaret C. Richards, Kevin S. Kidston
  • Patent number: 8177309
    Abstract: A leak diagnostic system for a vehicle comprises a calculation module and a diagnostic enabling module. The calculation module calculates a decay rate of a brake booster vacuum. The diagnostic enabling module selectively enables the decay rate calculation based on mass airflow (MAF) into an engine and engine vacuum.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: May 15, 2012
    Inventors: Zhong Wang, Tony T. Hoang, Lan Wang, Wenbo Wang, Margaret C. Richards, Daryl A Wilson
  • Publication number: 20110049974
    Abstract: A method for controlling braking of a vehicle having a first axle and a second axle includes the steps of obtaining a deceleration value pertaining to an input from a driver of the vehicle, braking the first axle with a first pressure, braking the second axle with a second pressure that is substantially equal to the first pressure if the deceleration value has not exceeded a predetermined threshold, and braking the second axle with a third pressure that is greater than the first pressure if the deceleration value has exceeded the predetermined threshold.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: DANNY Y. MUI, PATRICK J. MONSERE, JON K. LOGAN, MARGARET C. RICHARDS, ERIC E. KRUEGER, KEVIN S. KIDSTON, MATTHEW M. KARABA
  • Publication number: 20100280724
    Abstract: A method for controlling braking in a vehicle having a brake pedal includes the steps of obtaining a first measure of braking intent based on movement of the brake pedal, obtaining a second measure of braking intent based on a force applied to the brake pedal, controlling the braking based on the first measure provided that a transition parameter is less than a first predetermined value, controlling the braking based on the second measure provided that the transition parameter is greater than a second predetermined value, and controlling the braking based on the first measure and the second measure provided that the transition parameter is greater than the first predetermined value and less than the second predetermined value.
    Type: Application
    Filed: April 29, 2009
    Publication date: November 4, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: PATRICK J. MONSERE, JON K. LOGAN, DANNY Y. MUI, MARGARET C. RICHARDS, KEVIN S. KIDSTON
  • Publication number: 20100256885
    Abstract: A method that compensates for fluid pressure variations in a vehicle brake system so that the fluid pressure, brake torque and/or brake force at the wheel more accurately reflects that requested by the driver. In an exemplary embodiment, the method determines the braking intent of the driver, determines a current stage of the braking event (e.g., an apply stage, release stage, etc.), uses the braking event stage and the driver braking intent to select a pressure compensation, and uses the pressure compensation to generate compensated brake command signals for operating the vehicle brake system. This method is well suited for use with brake-by-wire systems, such as an electrohydraulic braking (EHB) system.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 7, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jon K. Logan, Patrick J. Monsere, Margaret C. Richards, Jonathan King, Danny Y. Mui
  • Publication number: 20100235065
    Abstract: A method that compensates for temperature-related effects in a vehicle brake system. According to one embodiment, the method determines the temperature of a brake pad, calculates a temperature-based modifier, and then uses the temperature-based modifier to adjust one or more brake command signals provided to the vehicle brake system so that they are compensated for temperature-related changes in the coefficient of friction (?) of the brake pad and rotor. The method may be used with brake-by-wire systems such as electrohydraulic braking (EHB) systems and electromechanical braking (EMB) systems.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 16, 2010
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Jon K. Logan, Patrick J. Monsere, Danny Y. Mui, Margaret C. Richards
  • Publication number: 20090273230
    Abstract: A leak diagnostic system for a vehicle comprises a calculation module and a diagnostic enabling module. The calculation module calculates a decay rate of a brake booster vacuum. The diagnostic enabling module selectively enables the decay rate calculation based on mass airflow (MAF) into an engine and engine vacuum.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 5, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Zhong Wang, Tony T. Hoang, Lan Wang, Wenbo Wang, Margaret C. Richards, Daryl A. Wilson
  • Publication number: 20090071147
    Abstract: A control system for evaluating a brake booster system includes an engine evaluation module that detects an engine off condition. A pressure evaluation module, during the engine off condition, monitors hydraulic brake line pressure, detects a change in brake booster pressure, and determines a brake booster vacuum decay rate based on the change in brake booster pressure. A fault reporting module detects a brake booster system fault based on the brake line pressure and the brake booster vacuum decay rate.
    Type: Application
    Filed: January 14, 2008
    Publication date: March 19, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Zhong Wang, Tony T. Hoang, Daryl A. Wilson, Margaret C. Richards, Lan Wang