Patents by Inventor Margaret Darrin

Margaret Darrin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050151006
    Abstract: An airship deployment system comprises an airship of unique shape having laminar flow over this shape to enable low power propulsion, capable remote control, comprising an inflatable body; a propeller assembly for station keeping and repositioning said airship and capable of being folded into a compacted position and unfolded into an operational position; and a payload, comprising gas for inflating said inflatable body; and means for transferring data between said airship and a remote location; and a missile for carrying said airship in a compacted state to a predetermined location and altitude, and releasing said airship at said predetermined location and altitude. When said airship is released from said missile said inflatable body is inflated and said propeller assembly is unfolded into said operational position.
    Type: Application
    Filed: July 16, 2004
    Publication date: July 14, 2005
    Inventors: Jerry Krill, Michael Roth, Frederick Riedel, Matthew Feinstein, William Mason, Margaret Darrin, Rafal Szczepanowski, Vincent Neradka
  • Patent number: 6819103
    Abstract: A Lorentz force-driven mechanical resonator apparatus that utilizes a high-Q resonant structure as both a mixing device and a high-Q bandpass filter. Specifically, an external time varying, but quasistatic, magnetic field is applied to the resonating device while simultaneously running a time varying electrical current through the device. The resulting Lorentz force (I×B) is proportional to the vector product of the electrical current in the bar (I) and the external magnetic field (B). Integrating such a resonant device with a magnetic field coil produces the functionality of an ideal radio frequency (RF) mixer coupled with a high-Q intermediate frequency (IF) filter. Wide tunability provides the capability to scan, or even step, an array of filters having very narrow bandwidths via a common local oscillator to a desired frequency range.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 16, 2004
    Assignee: The Johns Hopkins University
    Inventors: John L. Champion, Robert Osiander, Robert B. Givens, Dennis K. Wickenden, Daniel G. Jablonski, James H. Higbie, Scott T. Radcliffe, Margaret A. Darrin, Thomas J. Kistenmacher, Douglas A. Oursler
  • Publication number: 20040150398
    Abstract: A Lorentz force-driven mechanical resonator apparatus that utilizes a high-Q resonant structure as both a mixing device and a high-Q bandpass filter. Specifically, an external time varying, but quasistatic, magnetic field is applied to the resonating device while simultaneously running a time varying electrical current through the device. The resulting Lorentz force (I×B) is proportional to the vector product of the electrical current in the bar (I) and the external magnetic field (B). Integrating such a resonant device with a magnetic field coil produces the functionality of an ideal radio frequency (RF) mixer coupled with a high-Q intermediate frequency (IF) filter. Wide tunability provides the capability to scan, or even step, an array of filters having very narrow bandwidths via a common local oscillator to a desired frequency range.
    Type: Application
    Filed: November 21, 2002
    Publication date: August 5, 2004
    Inventors: John L. Champion, Robert Osiander, Robert Givens, Dennis K. Wickenden, Daniel G. Jablonski, Scott T. Radcliffe, Margaret A. Darrin, Thomas J. Macher, Douglas A. Oursler