Patents by Inventor Margaret M. Coad

Margaret M. Coad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11788916
    Abstract: A distributed sensor network for soft growing robots is provided. Sensor bands are distributed at discrete intervals along the length of the flexible tube, and the sensor bands each are wrapped circumferentially around the diameter of the flexible tube. Each sensor band has one or more sensors and one or more semi-rigid islands containing a self-contained microcontroller, and one or more communication lines to an aggregator microcontroller located at the base of the soft growing robot communicatively connecting signals from the sensor bands. A casing laminates the distributed sensor network. In one example the encasing has cavities or a tooth geometry to allow bending. The casing is flexible to not hinder the growth of the soft growing robot, yet protecting the distributed sensor network.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: October 17, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Alexander M. Gruebele, Andrew C. Zerbe, Margaret M. Coad, Mark R. Cutkosky
  • Publication number: 20220355468
    Abstract: Technology is provided for controlling the motion of soft growing robots during retraction to prevent uncontrollable buckling or bending. A double walled flexible tubular robot is provided with an inside wall, an outside wall, and a folded tip. A retraction device located at the folded tip has a routing aperture sized to encompass the inside wall and for routing the inside wall through the retraction device. The retraction device further has a retraction mechanism inside the retraction device to controllably retract material of the inside wall through the routing aperture in the direction away from the folded tip, thereby decreasing the outside wall, creating more inside wall, and as such shortening the length of the flexible robot.
    Type: Application
    Filed: October 9, 2020
    Publication date: November 10, 2022
    Inventors: Margaret M. Coad, Rachel Thomasson, Laura H. Blumenschein, Nathan Scot Usevitch, Allison M. Okamura
  • Publication number: 20220187153
    Abstract: A distributed sensor network for soft growing robots is provided. Sensor bands are distributed at discrete intervals along the length of the flexible tube, and the sensor bands each are wrapped circumferentially around the diameter of the flexible tube. Each sensor band has one or more sensors and one or more semi-rigid islands containing a self-contained microcontroller, and one or more communication lines to an aggregator microcontroller located at the base of the soft growing robot communicatively connecting signals from the sensor bands. A casing laminates the distributed sensor network. In one example the encasing has cavities or a tooth geometry to allow bending. The casing is flexible to not hinder the growth of the soft growing robot, yet protecting the distributed sensor network.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 16, 2022
    Inventors: Alexander M. Gruebele, Andrew C. Zerbe, Margaret M. Coad, Mark R. Cutkosky