Patents by Inventor Margarito Lopez

Margarito Lopez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11193012
    Abstract: A thermoplastic polyolefin composition and methods for its use is disclosed. The composition can include a thermoplastic polyolefin and a clarifying agent blend comprising a trisamide clarifier and sorbitol clarifier at a ratio of trisamide clarifier to sorbitol clarifier of 1:2 to 1:40 w/w.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: December 7, 2021
    Assignee: FINA TECHNOLOGY, INC.
    Inventors: Margarito Lopez, Michael Allen McLeod, Jon Tippet, Douglas Burmaster, John Ashbaugh
  • Publication number: 20200079943
    Abstract: A thermoplastic polyolefin composition and methods for its use is disclosed. The composition can include a thermoplastic polyolefin and a clarifying agent blend comprising a trisamide clarifier and sorbitol clarifier at a ratio of trisamide clarifier to sorbitol clarifier of 1:2 to 1:40 w/w.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 12, 2020
    Inventors: Margarito Lopez, Michael Allen McLeod, Jon Tippet, Douglas Burmaster, John Ashbaugh
  • Patent number: 9365710
    Abstract: A controlled rheology polypropylene that is made from Ziegler-Natta produced random copolymer and an additive formulation, extruded in the presence of a peroxide, exhibits low fluid retention and can be used to make medical/laboratory grade equipment, such a pipette tips.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: June 14, 2016
    Assignee: Fina Technology, Inc.
    Inventors: Margarito Lopez, Michael McLeod
  • Publication number: 20130165563
    Abstract: A controlled rheology polypropylene that is made from Ziegler-Natta produced random copolymer and an additive formulation, extruded in the presence of a peroxide, exhibits low fluid retention and can be used to make medical/laboratory grade equipment, such a pipette tips.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 27, 2013
    Inventors: Margarito Lopez, Michael McLeod
  • Patent number: 8246918
    Abstract: Polymer compositions and articles formed therefrom are described herein. The compositions include a random copolymer and a radiation additive, wherein the random copolymer includes propylene and less than 2 wt. % ethylene and exhibits a melt flow rate of from about 30 to 100 dg/min., the polymer composition exhibits a flexural modulus of from about 160 kpsi to about 200 kpsi and the polymer composition is adapted to produce a polymer article exhibiting low plate out, a haze at 20 mils of no greater than 15%, radiation stability and autoclavability.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 21, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Margarito Lopez, Michael Musgrave
  • Publication number: 20120116033
    Abstract: Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R? and R? are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 10, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20120095174
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 19, 2012
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy, Michel Daumerie
  • Patent number: 8110518
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 7, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy, Michel Daumerie
  • Publication number: 20100098586
    Abstract: Polymer compositions and articles formed therefrom are described herein. The compositions include a random copolymer and a radiation additive, wherein the random copolymer includes propylene and less than 2 wt. % ethylene and exhibits a melt flow rate of from about 300 to 100 dg/min., the polymer composition exhibits a flexural modulus of from about 160 kpsi to about 200 kpsi and the polymer composition is adapted to produce a polymer article exhibiting low plate out, a haze at 20 mils of no greater than 15%, radiation stability and autoclavability.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 22, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Margarito Lopez, Michael Musgrave
  • Patent number: 7649064
    Abstract: In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A? and A? are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 19, 2010
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20090156761
    Abstract: Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH?, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: October 26, 2007
    Publication date: June 18, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20090005526
    Abstract: In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A? and A? are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
    Type: Application
    Filed: August 28, 2008
    Publication date: January 1, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Patent number: 7439205
    Abstract: In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A? and A? are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 21, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Patent number: 7368411
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, specifically alpha olefins, particularly the polymerization of propylene to produce syndiotactic or isotactic polypropylene. The supported metallocene catalyst comprises a stereospecific metallocene catalyst and a co-catalyst component comprising at least one of an alkyl alumoxane and an alkylaluminum compound. Both the metallocene catalyst and the co-catalyst are supported on a particulate silica support comprising silica particles having an average particle size of 5-40 microns and an average effective pore size of 50-200 angstroms. The silica support further has a differential pore size distribution of a pore volume of at least 0.01 cm3/g. within a range having a maximum pore width of no more than 300 angstroms.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: May 6, 2008
    Assignee: Fina Technology, Inc
    Inventors: Margarito Lopez, Edwar Shamshoum, Donald Gordon Campbell, Jr.
  • Patent number: 7301040
    Abstract: Bidentate catalyst systems and the methods or forming such are described herein. The catalyst systems generally are compounds having the general formula: where R, R1, R2 and R3 are optional and independently selected from hydrogen, C1 to C20 alkyl groups or C6 to C20 aryl groups, A? and A? are independently selected from coordination groups, M is a Group 4 or 5 transition metal, X is selected from halogens, alkyl groups, aromatic groups or combinations thereof and n is less than 4.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: November 27, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070255022
    Abstract: Supported catalyst systems and methods of forming the same are generally described herein. The methods generally include providing an inorganic support composition, wherein the inorganic support composition includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof and contacting the inorganic support composition with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070255026
    Abstract: Catalyst systems, polymers and methods of forming the same are described herein. The catalyst systems generally include an inorganic support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof, wherein the inorganic support material has an acid strength (pKa) of less than about 4.8 and a transition metal compound, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to a transition metal valency.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070254800
    Abstract: Supported catalyst systems and methods of forming the same are generally described herein. The methods generally include providing a support material including silica-alumina prepared by cogel methods, contacting the support material with a fluorinating agent to form a fluorinated support and contacting the fluorinated support with a transition metal compound to form a supported catalyst system.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070255021
    Abstract: Supported catalyst systems, methods of forming the supported catalyst systems and polymerization processes including the supported catalyst systems are described herein. The methods generally include providing an inorganic support composition, wherein the inorganic support composition comprises aluminum, fluorine and silica and contacting the inorganic support composition with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy
  • Publication number: 20070255023
    Abstract: Copolymers and methods of forming copolymers are described herein. The methods generally include providing a transition metal compound represented by the formula [L]mM[A]n, wherein L is a bulky ligand including bis-indenyl, A is a leaving group, M is a transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency and providing a support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof. The methods further include contacting the transition metal compound with the support material to form an active supported catalyst system, wherein the contact of the transition metal compound with the support material occurs in proximity to contact with monomer and contacting the active supported catalyst system with a plurality of monomers to form an olefin copolymer.
    Type: Application
    Filed: September 29, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez