Patents by Inventor Margit Harting

Margit Harting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180321092
    Abstract: A hybrid electronic sensing component comprises an integrated circuit attached to an analogue circuit into which at least one sensing element has been integrated. The hybrid sensing component provides an output in digital form in response to a quantifiable change in its environmental conditions. The sensing functionality is separated from the data processing, which reduces the effect of self-heating due to the power consumption in the processor.
    Type: Application
    Filed: November 16, 2016
    Publication date: November 8, 2018
    Applicant: PST SENSORS (PROPRIETARY) LIMITED
    Inventors: Stephen David JONES, Emmanuel Ohieku JONAH, Margit HARTING, David Thomas BRITTON
  • Patent number: 9664573
    Abstract: A sensor device comprises an array of spaced apart sensor elements disposed in a pattern on a substrate. Each sensor element is connected electrically so that a physical variable measured by each sensor element independently can be recorded and/or displayed by an external instrument. The sensing device may be a temperature sensing device, in which case the sensor elements are temperature sensing elements such as negative temperature coefficient (NTC) thermistors. Alternatively the sensing device may be a strain or pressure sensing device, or an optical imaging device, in which case the sensor elements include piezoresistors or photoresistors. The sensor elements may be connected in a common source or write all-read one configuration, in a common output or write one-read all configuration, or in an array comprising X rows and Y columns, in a write X-read Y configuration.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: May 30, 2017
    Assignee: PST SENSORS (PROPRIETARY) LIMITED
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 9320145
    Abstract: An electronic component assembly comprises a printed component structure comprising at least one of a semiconducting ink, an insulating ink and a conducting ink deposited onto a substrate. The component structure defining at least one contact area, with a connecting lead disposed against or adjacent to the contact area. At least one layer of electrically insulating material encloses the component structure. At least one of the substrate and the layer of electrically insulating material comprises packaging material. The component structure can be printed on a substrate such as paper or another soft material, which is secured to a layer of insulating packaging material such as polyethylene. Instead, the substrate can be the insulating packaging material itself. Variations using hard and soft substrates are possible, and various examples of electronic component assembly are disclosed.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 19, 2016
    Assignee: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 9206324
    Abstract: A method of producing a printable composition comprises mixing a quantity of particulate semiconductor material with a quantity of a binder. The semiconductor material is typically nanoparticulate silicon with a particle size in the range from 5 nanometers to 10 microns. The binder is a self-polymerizing material comprising a natural oil, or a derivative or synthetic analog thereof. Preferably the binder comprises a natural polymer formed by auto-polymerization of a precursor consisting of a natural oil, or its derivatives including pure unsaturated fatty acids, mono- and di-glycerides, or methyl and ethyl esters of the corresponding fatty acids. The method may include applying the printable composition to a substrate, in single or multiple layers, and allowing the printable composition to cure to define the component or conductor on the substrate.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: December 8, 2015
    Assignee: PST SENSORS (PROPIETARY) LIMITED
    Inventors: David Thomas Britton, Ekundare Ayodele Odo, Margit Harting
  • Patent number: 9029180
    Abstract: A method of producing a temperature sensing device is provided. The method includes forming at least one silicon layer and at least one electrode or contact to define a thermistor structure. At least the silicon layer is formed by printing, and at least one of the silicon layer and the electrode or contact is supported by a substrate during printing thereof. Preferably, the electrodes or contacts are formed by printing, using an ink comprising silicon particles having a size in the range 10 nanometers to 100 micrometers, and a liquid vehicle composed of a binder and a suitable solvent. In some embodiments the substrate is an object the temperature of which is to be measured. Instead, the substrate may be a template, may be sacrificial, or may be a flexible or rigid material. Various device geometries are disclosed.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: May 12, 2015
    Assignee: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20150023393
    Abstract: A sensing device is made up of a network of nominally identical temperature dependent resistors which is topologically equivalent to a square resistor network. The device has terminals at which an average resistance value thereof can be measured. The resistors are supported on a substrate which can be reduced in size from an initial size without substantially changing the average resistance value. In preferred embodiments, a pattern of contacts and conductive tracks joining the contacts are printed on a substrate, and a material having a temperature dependent resistance is applied over the contacts to define a network of interconnected thermistors. Alternatively, the material can be applied to the substrate first and the contacts and tracks printed on it.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 22, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20150016487
    Abstract: A strain compensated temperature sensor includes a first, temperature dependent resistor, and a second, substantially temperature independent resistor connected in series with the temperature dependent resistor. At least one electrical contact allows an electrical potential difference to be applied across both resistors simultaneously. Both the temperature dependent resistor and the substantially temperature independent resistor are sensitive to mechanical strain. This permits temperature readings from the sensor to be corrected automatically for mechanical distortion of the sensor. The temperature dependent resistor and the substantially temperature independent resistor are of substantially similar construction, preferably being located adjacent one another in or on a common substrate, and hence have a similar response to a mechanical force applied to them.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20150007665
    Abstract: A sensor device comprises an array of spaced apart sensor elements disposed in a pattern on a substrate. Each sensor element is connected electrically so that a physical variable measured by each sensor element independently can be recorded and/or displayed by an external instrument. The sensing device may be a temperature sensing device, in which case the sensor elements are temperature sensing elements such as negative temperature coefficient (NTC) thermistors. Alternatively the sensing device may be a strain or pressure sensing device, or an optical imaging device, in which case the sensor elements include piezoresistors or photoresistors.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 8, 2015
    Applicant: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 8579415
    Abstract: Apparatus for depositing ink on a substrate includes a nozzle defining an outlet for the ink, with at least a portion of the nozzle being electrically conductive. A first voltage source applies a first potential to the outlet nozzle. One or more auxiliary electrodes are located adjacent the outlet nozzle, and a second voltage source applies a second potential to the auxiliary electrodes. The apparatus includes a piezo-electric or thermal actuator for expelling ink from the nozzle towards a target zone on a substrate, the ink comprising a liquid vehicle and pigment particles dispersed in the vehicle. At least the pigment particles are electrically charged, typically due to the applied potentials. In one embodiment, an auxiliary electrode is disposed coaxially around the electrode formed by the nozzle. In another embodiment, an auxiliary electrode located beyond the nozzle, on a common axis with the electrode formed by the nozzle.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: November 12, 2013
    Assignee: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Ekundare Ayodele Odo, Margit Harting
  • Publication number: 20130203201
    Abstract: A method of producing a temperature sensing device is provided. The method includes forming at least one silicon layer and at least one electrode or contact to define a thermistor structure. At least the silicon layer is formed by printing, and at least one of the silicon layer and the electrode or contact is supported by a substrate during printing thereof. Preferably, the electrodes or contacts are formed by printing, using an ink comprising silicon particles having a size in the range 10 nanometres to 100 micrometres, and a liquid vehicle composed of a binder and a suitable solvent. In some embodiments the substrate is an object the temperature of which is to be measured. Instead, the substrate may be a template, may be sacrificial, or may be a flexible or rigid material. Various device geometries are disclosed.
    Type: Application
    Filed: September 13, 2011
    Publication date: August 8, 2013
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20130199826
    Abstract: An electronic component assembly comprises a printed component structure comprising at least one of a semiconducting ink, an insulating ink and a conducting ink deposited onto a substrate. The component structure defining at least one contact area, with a connecting lead disposed against or adjacent to the contact area. At least one layer of electrically insulating material encloses the component structure. At least one of the substrate and the layer of electrically insulating material comprises packaging material. The component structure can be printed on a substrate such as paper or another soft material, which is secured to a layer of insulating packaging material such as polyethylene. Instead, the substrate can be the insulating packaging material itself. Variations using hard and soft substrates are possible, and various examples of electronic component assembly are disclosed.
    Type: Application
    Filed: September 13, 2011
    Publication date: August 8, 2013
    Applicant: PST SENSORS (PROPRIETARY) LIMITED
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 8434704
    Abstract: A method and apparatus of producing inorganic semiconducting nanoparticles having a stable surface includes providing an inorganic bulk semiconductor material milled in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of the semiconductor material, or prevent the formation of such oxides to provide semiconducting nanoparticles having a stable surface, allowing electrical contact between the nanoparticles. The milling media and/or one or more components of the mill include the selected reducing agent. The milling media or mill are typically composed of a metal selected from the group comprising iron, chromium, cobalt, nickel, tin, titanium, tungsten, vanadium, and aluminum, or an alloy containing one or more of these metals. Alternatively, the selected reducing agent includes a liquid contained in the mill during milling, which is typically an acidic solution containing any of hydrochloric, sulphuric, nitric, acetic, formic, or carbonic acid, or a mixture thereof.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: May 7, 2013
    Assignee: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 8354662
    Abstract: The invention relates to semiconducting nanoparticles. The nanoparticles of the invention comprise a single element or a compound of elements in one or more of groups II, III, IV, V, VI. The nanoparticles have a size in the range of 1 nm to 500 nm, and comprise from 0.1 to 20 atomic percent of oxygen or hydrogen. The nanoparticles are typically formed by comminution of bulk high purity silicon. One application of the nanoparticles is in the preparation of inks which can be used to define active layers or structures of semiconductor devices by simple printing methods.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: January 15, 2013
    Assignee: PST Sensors, Ltd.
    Inventors: David Thomas Britton, Margit Härting
  • Publication number: 20120018551
    Abstract: A method is provided of producing inorganic semiconducting nanoparticles having a stable surface. The method comprises providing an inorganic bulk semiconductor material, such as silicon or germanium, and milling the bulk semiconductor material in the presence of a selected reducing agent. The reducing agent acts to chemically reduce oxides of one or more component elements of the semiconductor material, or prevent the formation of such oxides by being preferentially oxidised, thereby to provide semiconducting nanoparticles having a stable surface which allows electrical contact between the nanoparticles. The milling may take place in a mill in which the milling media and/or one or more components of the mill comprise the selected reducing agent.
    Type: Application
    Filed: April 9, 2009
    Publication date: January 26, 2012
    Applicant: University of Cape Town
    Inventors: David Thomas Britton, Margit Harting
  • Patent number: 8026565
    Abstract: A thin film semiconductor in the form of a metal semiconductor field effect transistor, includes a substrate 10 of paper sheet material and a number of thin film active inorganic layers that are deposited in layers on the substrate. The active layers are printed using an offset lithography printing process. A first active layer comprises source 12.1 and drain 12.2 conductors of colloidal silver ink, that are printed directly onto the paper substrate. A second active layer is an intrinsic semiconductor layer 14 of colloidal nanocrystalline silicon ink which is printed onto the first layer. A third active layer comprises a metallic conductor 16 of colloidal silver which is printed onto the second layer to form a gate electrode. This invention extends to other thin film semiconductors such as photovoltaic cells and to a method of manufacturing semiconductors.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: September 27, 2011
    Assignee: University of Cape Town
    Inventors: Margit Harting, David Thomas Britton
  • Publication number: 20110080452
    Abstract: Apparatus for depositing ink on a substrate includes a nozzle defining an outlet for the ink, with at least a portion of the nozzle being electrically conductive. A first voltage source applies a first potential to the outlet nozzle. One or more auxiliary electrodes are located adjacent the outlet nozzle, and a second voltage source applies a second potential to the auxiliary electrodes. The apparatus includes a piezo-electric or thermal actuator for expelling ink from the nozzle towards a target zone on a substrate, the ink comprising a liquid vehicle and pigment particles dispersed in the vehicle. At least the pigment particles are electrically charged, typically due to the applied potentials. In one embodiment, an auxiliary electrode is disposed coaxially around the electrode formed by the nozzle. In another embodiment, an auxiliary electrode located beyond the nozzle, on a common axis with the electrode formed by the nozzle.
    Type: Application
    Filed: June 2, 2009
    Publication date: April 7, 2011
    Applicant: University of Cape Town
    Inventors: David Thomas Britton, Ekundare Ayodele Odo, Margit Harting
  • Patent number: 7763530
    Abstract: The invention relates to a method of doping semiconductor material. Essentially, the method comprises mixing a quantity of particulate semiconductor material with an ionic salt or a preparation of ionic salts. Preferably, the particulate semiconductor material comprises nanoparticles with a size in the range 1 nm to 100 ?m. Most preferably, the particle size is in the range from 50 nm to 500 nm. Preferred semiconductor materials are intrinsic and metallurgical grade silicon. The invention extends to a printable composition comprising the doped semiconductor material as well as a binder and a solvent. The invention also extends to a semiconductor device formed from layers of the printable composition having p and n type properties.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 27, 2010
    Assignee: University of Cape Town
    Inventors: David Thomas Britton, Margit Härting
  • Publication number: 20100148144
    Abstract: The invention relates to semiconducting nanoparticles. The nanoparticles of the invention comprise a single element or a compound of elements in one or more of groups II, III, IV, V, VI. The nanoparticles have a size in the range of 1 nm to 500 nm, and comprise from 0.1 to 20 atomic percent of oxygen or hydrogen. The nanoparticles are typically formed by comminution of bulk high purity silicon. One application of the nanoparticles is in the preparation of inks which can be used to define active layers or structures of semiconductor devices by simple printing methods.
    Type: Application
    Filed: June 29, 2006
    Publication date: June 17, 2010
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20090092855
    Abstract: The invention relates to a method of doping semiconductor material. Essentially, the method comprises mixing a quantity of particulate semiconductor material with an ionic salt or a preparation of ionic salts. Preferably, the particulate semiconductor material comprises nanoparticles with a size in the range 1 nm to 100 ?m. Most preferably, the particle size is in the range from 50 nm to 500 nm. Preferred semiconductor materials are intrinsic and metallurgical grade silicon. The invention extends to a printable composition comprising the doped semiconductor material as well as a binder and a solvent. The invention also extends to a semiconductor device formed from layers of the printable composition having p and n type properties.
    Type: Application
    Filed: August 23, 2006
    Publication date: April 9, 2009
    Applicant: UNIVERSITY OF CAPE TOWN
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20090004832
    Abstract: A method of producing a printable composition comprises mixing a quantity of particulate semiconductor material with a quantity of a binder. The semiconductor material is typically nanoparticulate silicon with a particle size in the range from 5 nanometres to 10 microns. The binder is a self-polymerising material comprising a natural oil, or a derivative or synthetic analogue thereof. Preferably the binder comprises a natural polymer formed by auto-polymerisation of a precursor consisting of a natural oil, or its derivatives including pure unsaturated fatty acids, mono- and di-glycerides, or methyl and ethyl esters of the corresponding fatty acids. The method may include applying the printable composition to a substrate, in single or multiple layers, and allowing the printable composition to cure to define the component or conductor on the substrate.
    Type: Application
    Filed: December 18, 2006
    Publication date: January 1, 2009
    Inventors: David Thomas Britton, Ekundare Ayodele Odo, Margit Harting