Patents by Inventor Margo Gisselberg

Margo Gisselberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8196589
    Abstract: A wireless marker for localizing a target of a patient comprises a casing and a magnetic transponder at least partially received in the casing. The magnetic transponder produces a wirelessly transmitted magnetic field in response to a wirelessly transmitted excitation energy. The magnetic transponder also has a magnetic centroid. The marker also comprises an imaging element carried by the casing and/or the magnetic transponder. The imaging element has a radiographic profile in a radiographic image such that the marker has a radiographic centroid at least approximately coincident with the magnetic centroid.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: June 12, 2012
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Keith Seiler, Steven C. Dimmer
  • Publication number: 20090278689
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 12, 2009
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Publication number: 20090209804
    Abstract: Apparatuses and methods for percutaneously implanting objects, such as radioactive seeds or markers, in patients. In one embodiment, a device for percutaneously implanting an object in a patient includes a handle, a cannula projecting outwardly from the handle, and an actuator movably disposed relative to the handle. In one aspect of this embodiment, the cannula can be configured to releasably hold the object and percutaneously penetrate the patient. In another aspect of this embodiment, the actuator can be operably connected to the cannula and operable to move the cannula relative to the handle and release the object within the patient. In a further aspect of this embodiment, the cannula can include a tip portion having a restriction configured to releasably hold the object for implantation in the patient.
    Type: Application
    Filed: July 25, 2005
    Publication date: August 20, 2009
    Applicant: Calypso Medical technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford, Margo Gisselberg
  • Patent number: 7535363
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: May 19, 2009
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Publication number: 20070213616
    Abstract: A targeting catheter is used to locate an arteriotomy, such as is formed during a femoral artery catheterization procedure. The targeting catheter includes one or more targeting aids, such as an inflatable balloon or sensor (e.g., Doppler or temperature sensor), to locate the arteriotomy. The targeting aid may be positioned at the arteriotomy. An ultrasonic beacon on the catheter may then be located relative to a therapeutic ultrasonic applicator (e.g., by using acoustic time-of-flight) so that the focus of ultrasonic energy from the applicator can be aligned with the arteriotomy.
    Type: Application
    Filed: October 19, 2006
    Publication date: September 13, 2007
    Inventors: Thomas Anderson, Charles Emery, Margo Gisselberg, John Kook, Larry Kulesa, Robert Pedersen, David Perozek, K. Sekins, Xiao Zhao, Jimin Zhang
  • Publication number: 20070057794
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Application
    Filed: November 13, 2006
    Publication date: March 15, 2007
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Patent number: 7135978
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: November 14, 2006
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Publication number: 20050154293
    Abstract: A wireless marker for localizing a target of a patient comprises a casing and a magnetic transponder at least partially received in the casing. The magnetic transponder produces a wirelessly transmitted magnetic field in response to a wirelessly transmitted excitation energy. The magnetic transponder also has a magnetic centroid. The marker also comprises an imaging element carried by the casing and/or the magnetic transponder. The imaging element has a radiographic profile in a radiographic image such that the marker has a radiographic centroid at least approximately coincident with the magnetic centroid.
    Type: Application
    Filed: December 24, 2003
    Publication date: July 14, 2005
    Inventors: Margo Gisselberg, Keith Seiler, Steven Dimmer
  • Publication number: 20030052785
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Application
    Filed: September 14, 2001
    Publication date: March 20, 2003
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin