Patents by Inventor Margot Mayer-Proschel

Margot Mayer-Proschel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6900054
    Abstract: A glial precursor cell population from mammalian central nervous system has been isolated. These A2B5+ E-NCAM? glial-restricted precursor (GRP) cells are capable of differentiating into oligodendrocytes, A2B5+ process-bearing astrocytes, and A2B5? fibroblast-like astrocytes, but not into neurons. GRP cells can be maintained by regeneration in culture. GRP cells differ from oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells in growth factor requirements, morphology, and progeny. Methods of use of GRP cells are also disclosed.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: May 31, 2005
    Assignee: University of Utah Research Foundation
    Inventors: Mahendra S. Rao, Mark Noble, Margot Mayer-Proschel
  • Patent number: 6852532
    Abstract: A method for isolating human neuroepithelial precursor cells from human fetal tissue by culturing the human fetal cells in fibroblast growth factor and chick embryo extract and immunodepleting from the cultured human fetal cells any cells expressing A2B5, NG2 and eNCAM is provided. In addition, methods for transplanting these cells into an animal are provided. Animals models transplanted with these human neuroepithelial precursor cells and methods for monitoring survival, proliferation, differentiation and migration of the cells in the animal model via detection of human specific markers are also provided.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: February 8, 2005
    Assignee: University of Utah Research Foundation
    Inventors: Margot Mayer-Proschel, Mahendra S. Rao, Patrick A. Tresco, Darin J. Messina
  • Publication number: 20050003531
    Abstract: A self-renewing restricted stem cell population has been identified in developing (embryonic day 13.5) spinal cords that can differentiate into multiple neuronal phenotypes, but cannot differentiate into glial phenotypes. This neuronal-restricted precursor (NRP) expresses highly polysialated or embryonic neural cell adhesion molecule (E-NCAM) and is morphologically distinct from neuroepithelial stem cells (NEP cells) and spinal glial progenitors derived from embryonic day 10.5 spinal cord. NRP cells self renew over multiple passages in the presence of fibroblast growth factor (FGF) and neurotrophin 3 (NT-3) and express a characteristic subset of neuronal epitopes. When cultured in the presence of RA and the absence of FGF, NRP cells differentiate into GABAergic, glutaminergic, and cholinergic immunoreactive neurons. NRP cells can also be generated from multipotent NEP cells cultured from embryonic day 10.5 neural tubes.
    Type: Application
    Filed: August 4, 2004
    Publication date: January 6, 2005
    Inventors: Mahendra Rao, Margot Mayer-Proschel, Anjali Kalyani
  • Patent number: 6787353
    Abstract: A self-renewing restricted stem cell population has been identified in developing (embryonic day 13.5) spinal cords that can differentiate into multiple neuronal phenotypes, but cannot differentiate into glial phenotypes. This neuronal-restricted precursor (NRP) expresses highly polysialated or embryonic neural cell adhesion molecule (E-NCAM) and is morphologically distinct from neuroepithelial stem cells (NEP cells) and spinal glial progenitors derived from embryonic day 10.5 spinal cord. NRP cells self renew over multiple passages in the presence of fibroblast growth factor (FGF) and neurotrophin 3 (NT-3) and express a characteristic subset of neuronal epitopes. When cultured in the presence of RA and the absence of FGF, NRP cells differentiate into GABAergic, glutaminergic, and cholinergic immunoreactive neurons. NRP cells can also be generated from multipotent NEP cells cultured from embryonic day 10.5 neural tubes.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: September 7, 2004
    Assignee: University of Utah Research Foundation
    Inventors: Mahendra S. Rao, Margot Mayer-Proschel, Anjali J. Kalyani
  • Patent number: 6734015
    Abstract: A self-renewing restricted stem cell population has been identified in developing (embryonic day 13.5) spinal cords that can differentiate into multiple neuronal phenotypes, but cannot differentiate into glial phenotypes. This neuronal-restricted precursor (NRP) expresses highly polysialated or embryonic neural cell adhesion molecule (E-NCAM) and is morphologically distinct from neuroepithelial stem cells (NEP cells) and spinal glial progenitors derived from embryonic day 10.5 spinal cord. NRP cells self renew over multiple passages in the presence of fibroblast growth factor (FGF) and neurotrophin 3 (NT-3) and express a characteristic subset of neuronal epitopes. When cultured in the presence of RA and the absence of FGF, NRP cells differentiate into GABAergic, glutaminergic, and cholinergic immunoreactive neurons. NRP cells can also be generated from multipotent NEP cells cultured from embryonic day 10.5 neural tubes.
    Type: Grant
    Filed: July 4, 1997
    Date of Patent: May 11, 2004
    Assignee: University of Utah Research Foundation
    Inventors: Mahendra S. Rao, Margot Mayer-Proschel
  • Publication number: 20030109041
    Abstract: A glial precursor cell population from mammalian central nervous system has been isolated. These A2B5+ E-NCAM− glial-restricted precursor (GRP) cells are capable of differentiating into oligodendrocytes, A2B5+ process-bearing astrocytes, and A2B5− fibroblast-like astrocytes, but not into neurons. GRP cells can be maintained by regeneration in culture. GRP cells differ from oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells in growth factor requirements, morphology, and progeny. Methods of use of GRP cells are also disclosed.
    Type: Application
    Filed: December 30, 2002
    Publication date: June 12, 2003
    Inventors: Mahendra S. Rao, Mark Noble, Margot Mayer-Proschel
  • Publication number: 20020168767
    Abstract: A method for isolating human neuroepithelial precursor cells from human fetal tissue by culturing the human fetal cells in fibroblast growth factor and chick embryo extract and immunodepleting from the cultured human fetal cells any cells expressing A2B5, NG2 and eNCAM is provided. In addition, methods for transplanting these cells into an animal are provided. Animals models transplanted with these human neuroepithelial precursor cells and methods for monitoring survival, proliferation, differentiation and migration of the cells in the animal model via detection of human specific markers are also provided.
    Type: Application
    Filed: March 21, 2001
    Publication date: November 14, 2002
    Inventors: Margot Mayer-Proschel, Mahendra S. Rao, Patrick A. Tresco, Darin J. Messina
  • Publication number: 20020142460
    Abstract: Multipotent neuroepithelial stem cells and lineage-restricted oligodendrocyte-astrocyte precursor cells are described. The neuroepithelial stem cells are capable of self-renewal and of differentiation into neurons, astrocytes, and oligodendrocytes. The oligodendrocyte-astrocyte precursor cells are derived from neuroepithelial stem cells, are capable of self-renewal, and can differentiate into oligodendrocytes and astrocytes, but not neurons. Methods of generating, isolating, and culturing such neuroepithelial stem cells and oligodendrocyte-astrocyte precursor cells are also disclosed.
    Type: Application
    Filed: December 19, 2001
    Publication date: October 3, 2002
    Inventors: Mahendra S. Rao, Margot Mayer-Proschel
  • Publication number: 20020058628
    Abstract: The present invention relates to a method for treating a disease or condition for which treatment involves the promotion of growth of neuronal cell processes and whose therapy comprises the administration of an agonist for neuronal cell surface receptors that promote outgrowth of neuronal processes said method comprising administering a therapeutically effective amount of said agonist in combination with a therapeutically effective concentration of one or more antioxidants/free radical scavengers and/or an agent capable of raising intracellular thiol levels and/or a steroid. A representative intracellular thiol is glutathione, the agent capable of raising intracellular thiol levels is N-acetylcysteine (NAC), and representative antioxidantsfree radical scavengers may be selected from the group consisting of Vitamin C, Vitamin E, analogs thereof and mixtures thereof. A representative Vitamin E analog is trolox.
    Type: Application
    Filed: May 9, 2001
    Publication date: May 16, 2002
    Inventors: Mark David Noble, Margot Mayer - Proschel
  • Patent number: 6361996
    Abstract: Multipotent neuroepithelial stem cells and lineage-restricted oligodendrocyte-astrocyte precursor cells are described. The neuroepithelial stem cells are capable of self-renewal and of differentiation into neurons, astrocytes, and oligodendrocytes. The oligodendrocyte-astrocyte precursor cells are derived from neuroepithelial stem cells, are capable of self-renewal, and can differentiate into oligodendrocytes and astrocytes, but not neurons. Methods of generating, isolating, and culturing such neuroepithelial stem cells and oligodendrocyte-astrocyte precursor cells are also disclosed.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: March 26, 2002
    Assignee: University of Utah Research Foundation
    Inventors: Mahendra S. Rao, Margot Mayer-Proschel
  • Publication number: 20010029045
    Abstract: A glial precursor cell population from mammalian central nervous system has been isolated. These A2B5+ E-NCAM− glial-restricted precursor (GRP) cells are capable of differentiating into oligodendrocytes, A2B5+ process-bearing astrocytes, and A2B5− fibroblast-like astrocytes, but not into neurons. GRP cells can be maintained by regeneration in culture. GRP cells differ from oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells in growth factor requirements, morphology, and progeny. Methods of use of GRP cells are also disclosed.
    Type: Application
    Filed: March 16, 2001
    Publication date: October 11, 2001
    Inventors: Mahendra S. Rao, Mark Noble, Margot Mayer-Proschel
  • Patent number: 6235527
    Abstract: A glial precursor cell population from mammalian central nervous system has been isolated. These A2B5+ E-NCAM− glial-restricted precursor (GRP) cells are capable of differentiating into oligodendrocytes, A2B5+ process-bearing astrocytes, and A2B5− fibroblast-like astrocytes, but not into neurons. GRP cells can be maintained by regeneration in culture. GRP cells differ from oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells in growth factor requirements, morphology, and progeny. Methods of use of GRP cells are also disclosed.
    Type: Grant
    Filed: November 29, 1997
    Date of Patent: May 22, 2001
    Assignee: University of Utah Research Foundation
    Inventors: Mahendra S. Rao, Mark Noble, Margot Mayer-Proschel