Patents by Inventor Margot R. Vulliez

Margot R. Vulliez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230339121
    Abstract: Haptic-robot control based on local autonomy and a dual-proxy model is provided. The dual proxy guarantees generation of safe and consistent commands for two local controllers, which ensure the compliance and stability of the systems on both sides. A Force-Space Particle Filter enables an autonomous modeling and rendering of the task contact geometry from the robot state and sensory data. The method suppresses the instability issues caused by the transfer of power variables through a network with communication delays in conventional haptic-robot controllers. The results demonstrated the transparency and high fidelity of the method, and robustness to communication delays. While the conventional method failed for communication delays higher that 150 milliseconds, the dual proxy method maintained high performance for delays up to one and a half seconds. The local autonomy-based haptic control of robots with the dual-proxy model enables applications in areas such as medical, underwater and space robotics.
    Type: Application
    Filed: November 20, 2021
    Publication date: October 26, 2023
    Inventors: Jorda Mikael, Margot R. Vulliez, Oussama Khatib
  • Publication number: 20230330865
    Abstract: An adaptive workspace mapping controller is provided having a fine balance between a progressive drift to the task area of interests and an adjustment of the remote force-motion resolution through scaling factor change. This adaptive workspace mapping controller gives the human the possibility to perform teleoperation activities in any environments without feeling the limitations of the haptic interface. Embodiments smartly and continuously adapts force-motion mapping in the teleoperation system, between the haptic device and the controlled robot, with respect to their respective workspaces and capabilities, to the task trajectories and interaction forces, and to user preferences. It significantly improves on the existing mapping controllers since the new drift-computation method and the additional adaptive-scaling step make it as efficient in large free-space motions as in quasi-static interaction tasks.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 19, 2023
    Inventors: Margot R. Vulliez, Oussama Khatib
  • Publication number: 20230311337
    Abstract: A versatile, compact, and high-fidelity haptic device is provided. The mechanical transparency of the design and the selection of proper actuation meet the challenges of an accurate and stiff haptic device with high and isotropic force capability. Such a haptic interface enables a precise remote control and provides perfect sense of the task interaction in any environments and applications.
    Type: Application
    Filed: September 7, 2021
    Publication date: October 5, 2023
    Inventors: Margot R. Vulliez, Oussama Khatib