Patents by Inventor Mari Dezawa

Mari Dezawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170258844
    Abstract: The purpose of the present invention is to provide a novel medicinal use in regeneration medicine, said medicinal use comprising using pluripotent stem cells (Muse cells). Provided is a cell preparation for treating skin ulcer, said cell preparation comprising SSEA-3 positive pluripotent stem cells isolated from a mesenchymal tissue of a living organism or cultured mesenchymal cells. The cell preparation according to the present invention is based on such mechanism of skin tissue regeneration that, when the Muse cells are administered to a skin ulcer site of a subject suffering from the aforesaid disease, the Muse cells differentiate into skin-constituting cells.
    Type: Application
    Filed: June 19, 2015
    Publication date: September 14, 2017
    Inventors: Kotaro Yoshimura, Kahori Kinoshita, Mari Dezawa
  • Publication number: 20170128494
    Abstract: An object of the present invention is to provide a novel medical application to regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating cerebral infarction and sequelae associated therewith that contains SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue in the body or cultured mesenchymal cells. The cell preparation of the present invention is based on a brain tissue regeneration mechanism by which Muse cells differentiate into nerve cells and the like in damaged brain tissue by administering Muse cells into cerebral parenchyma.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Applicants: CLIO, INC., TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Mari Dezawa, Teiji Tominaga
  • Publication number: 20170128498
    Abstract: An object of the present invention is to provide a novel medical application to regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating chronic kidney disease that contains SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue in the body or cultured mesenchymal cells. The cell preparation of the present invention is based on a renal tissue regeneration mechanism by which Muse cells are made to selectively accumulate at a site of kidney disease and differentiate into cells that compose the kidney by administering Muse cells intravenously to a subject having the aforementioned disease.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 11, 2017
    Applicants: CLIO, INC., TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Mari Dezawa
  • Patent number: 9550975
    Abstract: Objects of the present invention are to provide a method for directly obtaining pluripotent stem cells from body tissue and the thus obtained pluripotent stem cells. The present invention relates to SSEA-3 (+) pluripotent stem cells that can be isolated from body tissue.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 24, 2017
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Youichi Nabeshima, Shohei Wakao
  • Publication number: 20160369232
    Abstract: Objects of the present invention are to provide a method for directly obtaining pluripotent stem cells which do not have tumorigenic property from body tissue and the thus obtained pluripotent stem cells. The present invention relates to SSEA-3 (+) pluripotent stem cells that can be isolated from body tissue.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 22, 2016
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Youichi Nabeshima, Shohei Wakao, Masanori Yoshida, Yasumasa Kuroda
  • Publication number: 20160354393
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: MARI DEZAWA, YOSHINORI FUJIYOSHI, MASANORI YOSHIDA
  • Publication number: 20160304835
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing, further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Applicant: SanBio, Inc.
    Inventors: Mari DEZAWA, Hajime SAWADA, Hiroshi KANNO, Masahiko TAKANO
  • Patent number: 9446033
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: September 20, 2016
    Assignees: CLIO, INC., TOHOKU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Masanori Yoshida
  • Patent number: 9441199
    Abstract: Disclosed are cells exhibiting neuronal progenitor cell characteristics, and methods of making them from marrow adherent stem cells by regulating cellular pathways in the marrow adherent stem cells that are associated with glial transdifferentiation of the marrow adherent stem cells.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: September 13, 2016
    Assignee: SanBio, Inc.
    Inventor: Mari Dezawa
  • Patent number: 9399046
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 26, 2016
    Assignee: SanBio, Inc.
    Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
  • Patent number: 9399758
    Abstract: Objects of the present invention are to provide a method for directly obtaining pluripotent stem cells which do not have tumorigenic property from body tissue and the thus obtained pluripotent stem cells. The present invention relates to SSEA-3 (+) pluripotent stem cells that can be isolated from body tissue.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 26, 2016
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Youichi Nabeshima
  • Publication number: 20160151418
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Application
    Filed: January 3, 2013
    Publication date: June 2, 2016
    Applicant: SANBIO, INC.
    Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
  • Publication number: 20160082048
    Abstract: An object of the present invention is to provide a novel medical application to regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating cerebral infarction and sequelae associated therewith that contains SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue in the body or cultured mesenchymal cells. The cell preparation of the present invention is based on a brain tissue regeneration mechanism by which Muse cells differentiate into nerve cells and the like in damaged brain tissue by administering Muse cells into cerebral parenchyma.
    Type: Application
    Filed: April 24, 2015
    Publication date: March 24, 2016
    Inventors: Masanori Yoshida, Mari Dezawa, Teiji Tominaga
  • Publication number: 20160058800
    Abstract: An object of the present invention is to provide a novel medical application to regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating chronic kidney disease that contains SSEA-3-positive pluripotent stem cells isolated from mesenchymal tissue in the body or cultured mesenchymal cells. The cell preparation of the present invention is based on a renal tissue regeneration mechanism by which Muse cells are made to selectively accumulate at a site of kidney disease and differentiate into cells that compose the kidney by administering Muse cells intravenously to a subject having the aforementioned disease.
    Type: Application
    Filed: April 24, 2015
    Publication date: March 3, 2016
    Inventors: Masanori Yoshida, Mari Dezawa
  • Publication number: 20160008340
    Abstract: The purpose of the present invention is to identify a migratory factor that guides pluripotent stem cells (Muse cells) useful in new medical applications to damage, and to provide a pharmaceutical composition that includes the migratory factor for promoting tissue regeneration in regenerative medicine that makes use of Muse cells. In the present invention, a receptor that is specifically expressed in Muse cells rather than non-Muse cells was identified, and it was confirmed that a ligand for this receptor can function as a migratory factor. In the present invention, sphingosine-1-phosphate (S1P) was identified as a migratory factor, and thus, the present invention pertains to a pharmaceutical composition for guiding pluripotent stem cells to damage, the composition including S1P as an active ingredient.
    Type: Application
    Filed: February 28, 2014
    Publication date: January 14, 2016
    Inventors: Mari Dezawa, Yoshinori Fujiyoshi, Masanori Yoshida
  • Publication number: 20150329827
    Abstract: The present invention, relates to novel methods of isolating and expanding pluripotent stem cells, including multi-lineage stress enduring (MUSE) cells.
    Type: Application
    Filed: December 23, 2013
    Publication date: November 19, 2015
    Inventors: Wise Young, Yi Ban, Dongming Sun, Mari Dezawa
  • Publication number: 20150267169
    Abstract: Disclosed are cells exhibiting neuronal progenitor cell characteristics, and methods of making them from marrow adherent stem cells by regulating cellular pathways in the marrow adherent stem cells that are associated with glial transdifferentiation of the marrow adherent stem cells.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Applicant: SanBio, Inc.
    Inventor: Mari DEZAWA
  • Publication number: 20150196600
    Abstract: An object of the present invention is to provide a novel medical application for use in regenerative medicine that uses pluripotent stem cells (Muse cells). The present invention provides a cell preparation for treating myocardial infarction, and particularly serious massive myocardial infarction and heart failure associated therewith, that contains pluripotent stem cells positive for SSEA-3 isolated from biological mesenchymal tissue or cultured mesenchymal cells. The cell preparation of the present invention is based on a cardiac tissue regeneration mechanism by which Muse cells are made to selectively accumulate in damaged myocardial tissue and differentiate into cardiac muscle in that tissue as a result of intravenous administration of Muse cells to a subject presenting with the aforementioned disorders.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 16, 2015
    Applicant: TOHOKU UNIVERSITY
    Inventors: Masanori Yoshida, Shinya Minatoguchi, Mari Dezawa
  • Patent number: 8969078
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 3, 2015
    Assignee: SanBio, Inc.
    Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano
  • Patent number: 8361456
    Abstract: There is provided a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells by introduction of a Notch gene. Specifically, the invention provides a method of inducing differentiation of bone marrow stromal cells to neural cells or skeletal muscle cells in vitro, which method comprises introducing a Notch gene and/or a Notch signaling related gene into the cells, wherein the finally obtained differentiated cells are the result of cell division of the bone marrow stromal cells into which the Notch gene and/or Notch signaling related gene have been introduced. The invention also provides a method of inducing further differentiation of the differentiation-induced neural cells to dopaminergic neurons or acetylcholinergic neurons. The invention yet further provides a treatment method for neurodegenerative and skeletal muscle degenerative diseases which employs neural precursor cells, neural cells or skeletal muscle cells produced by the method of the invention.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: January 29, 2013
    Assignee: SanBio, Inc.
    Inventors: Mari Dezawa, Hajime Sawada, Hiroshi Kanno, Masahiko Takano