Patents by Inventor Maria Anc

Maria Anc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220254760
    Abstract: Methods, systems, and materials for producing micro-pixelated LEDs capable of achieving a full-color spectrum through stereolithography techniques are provided. The techniques include depositing a photocurable nanophosphor ink composition onto a substrate, projecting a pattern onto the substrate and ink composition, and then curing at least a portion of the ink composition based on the projected pattern. The ink composition includes at least one photocurable polymer, a plurality of nanophosphors (e.g., QDs), and at least one light-scattering additive. The resulting cured ink composition and substrate component can be a pixelated LED that is configured to fully convert blue light-emitting pixels to red and green light-emitting pixels. Printing systems for performing these methods and producing these LEDs are also disclosed, as are various, non-limiting examples of ink composition formulations.
    Type: Application
    Filed: July 9, 2020
    Publication date: August 11, 2022
    Inventors: Darshan KUNDALIYA, Xinhao LI, Maria ANC, Nicholas FANG
  • Patent number: 10475967
    Abstract: Wavelength converters (103) with improved thermal conductivity are described. In some embodiments the wavelength converters include a thermally conductive component (204, 206) and a wavelength conversion material (205) mixed with or dispersed in the thermally conductive component. The wavelength conversion material (205) includes non-agglomerated quantum dots. The presence of the thermally conductive component may facilitate removal of heat from the wavelength converter, potentially reducing the impact of elevated temperature on the performance of the wavelength conversion material therein. Methods of making such wavelength converters and lighting devices including such wavelength converters are also described.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Maria Anc, Mark Hannah
  • Patent number: 10374137
    Abstract: The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: August 6, 2019
    Assignees: OSRAM GmbH, OSRAM Opto Semiconductors GmbH
    Inventors: Maria Anc, Alan Lenef
  • Publication number: 20180313501
    Abstract: Wavelength converters (103) with improved thermal conductivity are described. In some embodiments the wavelength converters include a thermally conductive component (204, 206) and a wavelength conversion material (205) mixed with or dispersed in the thermally conductive component. The wavelength conversion material (205) includes non-agglomerated quantum dots. The presence of the thermally conductive component may facilitate removal of heat from the wavelength converter, potentially reducing the impact of elevated temperature on the performance of the wavelength conversion material therein. Methods of making such wavelength converters and lighting devices including such wavelength converters are also described.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Maria Anc, Mark Hannah
  • Patent number: 9837586
    Abstract: Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
    Type: Grant
    Filed: September 11, 2016
    Date of Patent: December 5, 2017
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Maria Anc
  • Publication number: 20160380164
    Abstract: Disclosed herein are wavelength converters and methods for making the same. The wavelength converters include a single layer of a polymeric matrix material, and one or more types of wavelength converting particles. In some embodiments the wavelength converters include first and second types of wavelength converting particles that are distributed in a desired manner within the single layer of polymeric matrix material. Methods of forming such wavelength converters and lighting devices including such wavelength converters are also disclosed.
    Type: Application
    Filed: September 11, 2016
    Publication date: December 29, 2016
    Applicant: OSRAM SYLVANIA Inc.
    Inventor: Maria Anc
  • Publication number: 20160369954
    Abstract: The present disclosure is directed to light converter assemblies with enhanced heat dissipation. A light converter assembly may comprise a confinement material applied to at least a first substrate and a phosphor material also deposited on the first substrate so as to be surrounded by the confinement material. The first substrate may be hermetically sealed to a second substrate using the confinement material so that the phosphor material is confined between the substrates and protected from atmospheric contamination. The substrates may comprise, for example, sapphire to allow for light beam transmission and heat conductance. Confinement materials that may be employed to seal the first substrate to the second substrate may include, for example, silicon or a metal (e.g., silver, copper, aluminum, etc.) The phosphor material may comprise, for example, at least one quantum dot material.
    Type: Application
    Filed: March 10, 2015
    Publication date: December 22, 2016
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Maria Anc, Alan Lenef
  • Publication number: 20150267052
    Abstract: The present disclosure describes the use of a polycyclic polysiloxane polymer for light emitting diodes (LEDs). The polymer is characterized by high flame retardancy, high temperature stability, and low moisture and gas permeability. The polymer is useful as a potting compound for encapsulation of phosphors in LED packages, or as a molding resin for producing optical parts for LED light engines, or as a protective coating applied over the light emitting elements.
    Type: Application
    Filed: September 27, 2013
    Publication date: September 24, 2015
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Maxim Tchoul, Maria Anc, David Johnston
  • Patent number: 8618570
    Abstract: A light emitting diode (LED) light engine includes a solid transparent dome mounted on one or more LED dies to form a base module, a flexible sheath having embedded therein a phosphor that converts light of a first wavelength range to light of a second wavelength range, the sheath being attached to the base module so that the sheath conforms to a light emitting surface of the dome. The sheath emits light of the second wavelength range when the LED is emitting light of the first wavelength range. Further sheaths may be formed each with different phosphors or phosphor blends, and one of the sheaths may be selected to cover the base module depending on the color of light to be produced by the light engine.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: December 31, 2013
    Assignee: Osram Sylvania Inc.
    Inventors: Miguel Galvez, Maria Anc
  • Publication number: 20120068205
    Abstract: A light emitting diode (LED) light engine includes a solid transparent dome mounted on one or more LED dies to form a base module, a flexible sheath having embedded therein a phosphor that converts light of a first wavelength range to light of a second wavelength range, the sheath being attached to the base module so that the sheath conforms to a light emitting surface of the dome. The sheath emits light of the second wavelength range when the LED is emitting light of the first wavelength range. Further sheaths may be formed each with different phosphors or phosphor blends, and one of the sheaths may be selected to cover the base module depending on the color of light to be produced by the light engine.
    Type: Application
    Filed: April 28, 2010
    Publication date: March 22, 2012
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Miguel Galvez, Maria Anc
  • Patent number: 7618157
    Abstract: A lamp includes a linearly extending heat sink, blue-light-emitting LEDs mounted on the heat sink, and a light emitting cover mounted on the heat sink in line with the LEDs, a first portion of the cover opposite the LEDs including a phosphor that is excited by the LEDs to emit white light. The cover may be a tube with the LEDs outside the tube, a portion of the tube nearest the LEDs being transparent and receiving light from the LEDs. The tube may include reflectors that are attached to an exterior surface of the tube to hold the tube on the heat sink. Alternatively, the cover may enclose the LEDs on the heat sink, where a portion of the cover has an interior surface that reflects light from the LEDs to the first portion. The lamp may include electrical connections that allow for multiple lamps to be connected in series.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 17, 2009
    Assignee: Osram Sylvania Inc.
    Inventors: Miguel Galvez, Maria Anc, Richard Speer, William A. George
  • Publication number: 20060131514
    Abstract: An ion implanter having a source, a workpiece support and a transport system for delivering ions from the source to an ion implantation chamber that contains the workpiece support. The implanter includes one or more removable inserts mounted to an interior of either the transport system or the ion implantation chamber for collecting material entering either the transport system or the ion implantation chamber due to collisions between ions and the workpiece within the ion implantation chamber during ion processing of the workpiece. A temperature control coupled to the one or more removable inserts for maintaining the temperature of the insert at a controlled temperature to promote formation of a film on said insert during ion treatment due to collisions between ions and said workpiece.
    Type: Application
    Filed: December 22, 2004
    Publication date: June 22, 2006
    Inventors: Maria Anc, Dale Stone, Christopher Reddy