Patents by Inventor Maria Athelogou

Maria Athelogou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10579935
    Abstract: A system predicts the recurrence of cancer. A first slice of a prostate tissue sample is stained so that luminal epithelial cells and basal epithelial cells are stained different colors. A first digital image is taken of the first slice. The second slice of the sample is stained so that M1 type macrophages and M2 type macrophages are differentially stained. A second digital image is taken of the second slice. The system analyzes the first digital image and defines regions of non-intact glands. Intact gland regions are then determined, and regions of stroma are identified. The system defines influence zones between non-intact regions and stroma regions. Using information from the second image, macrophages in the tissue corresponding to the influence zones are identified and counted. Based at least in part on this count, the system determines a score. The score is indicative of whether the patient will experience PSA recurrence.
    Type: Grant
    Filed: August 11, 2019
    Date of Patent: March 3, 2020
    Assignee: Definiens AG
    Inventors: Nathalie Harder, Maria Athelogou
  • Publication number: 20190362259
    Abstract: A system predicts the recurrence of cancer. A first slice of a prostate tissue sample is stained so that luminal epithelial cells and basal epithelial cells are stained different colors. A first digital image is taken of the first slice. The second slice of the sample is stained so that M1 type macrophages and M2 type macrophages are differentially stained. A second digital image is taken of the second slice. The system analyzes the first digital image and defines regions of non-intact glands. Intact gland regions are then determined, and regions of stroma are identified. The system defines influence zones between non-intact regions and stroma regions. Using information from the second image, macrophages in the tissue corresponding to the influence zones are identified and counted. Based at least in part on this count, the system determines a score. The score is indicative of whether the patient will experience PSA recurrence.
    Type: Application
    Filed: August 11, 2019
    Publication date: November 28, 2019
    Inventors: Nathalie Harder, Maria Athelogou
  • Patent number: 10380491
    Abstract: A system predicts the recurrence of cancer. A first slice of a prostate tissue sample is stained so that luminal epithelial cells and basal epithelial cells are stained different colors. A first digital image is taken of the first slice. The second slice of the sample is stained so that M1 type macrophages and M2 type macrophages are differentially stained. A second digital image is taken of the second slice. The system analyzes the first digital image and defines regions of non-intact glands. Intact gland regions are then determined, and regions of stroma are identified. The system defines influence zones between non-intact regions and stroma regions. Using information from the second image, macrophages in the tissue corresponding to the influence zones are identified and counted. Based at least in part on this count, the system determines a score. The score is indicative of whether the patient will experience PSA recurrence.
    Type: Grant
    Filed: March 20, 2016
    Date of Patent: August 13, 2019
    Assignee: Definiens AG
    Inventors: Nathalie Harder, Maria Athelogou
  • Patent number: 10262189
    Abstract: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: April 16, 2019
    Assignee: Definiens AG
    Inventors: Ralf Schoenmeyer, Gerd Binnig, Guenter Schmidt, Maria Athelogou, Peter Ellenberg
  • Publication number: 20170372118
    Abstract: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
    Type: Application
    Filed: August 11, 2017
    Publication date: December 28, 2017
    Inventors: Ralf Schoenmeyer, Gerd Binnig, Guenter Schmidt, Maria Athelogou, Peter Ellenberg
  • Patent number: 9779499
    Abstract: An improved histopathological score is obtained by identifying objects in images of glandular tissue from cancer patients. The objects are identified based on staining by a biomarker. The score predicts that a cancer patient will have a recurrence of cancer of the glandular tissue based on a geometric characteristic of individual identified objects but not on any pattern formed by the identified objects. First objects are generated from the image of glandular tissue which has been stained with a single biomarker that stains epithelial cells. Second objects are then generated using the first objects. A geometric feature of each of the second objects is measured. A shape index is then calculated for each of the second objects based on the geometric feature, and an average shape index is calculated. Based on the average shape index, a score is determined that indicates a level of cancer malignancy of the glandular tissue.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: October 3, 2017
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Nathalie Harder
  • Publication number: 20170270420
    Abstract: A system predicts the recurrence of cancer. A first slice of a prostate tissue sample is stained so that luminal epithelial cells and basal epithelial cells are stained different colors. A first digital image is taken of the first slice. The second slice of the sample is stained so that M1 type macrophages and M2 type macrophages are differentially stained. A second digital image is taken of the second slice. The system analyzes the first digital image and defines regions of non-intact glands. Intact gland regions are then determined, and regions of stroma are identified. The system defines influence zones between non-intact regions and stroma regions. Using information from the second image, macrophages in the tissue corresponding to the influence zones are identified and counted. Based at least in part on this count, the system determines a score. The score is indicative of whether the patient will experience PSA recurrence.
    Type: Application
    Filed: March 20, 2016
    Publication date: September 21, 2017
    Inventors: Nathalie Harder, Maria Athelogou
  • Patent number: 9740912
    Abstract: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 22, 2017
    Assignee: Definiens AG
    Inventors: Ralf Schoenmeyer, Gerd Binnig, Guenter Schmidt, Maria Athelogou, Peter Ellenberg
  • Publication number: 20170084021
    Abstract: An improved histopathological score is obtained by identifying objects in images of glandular tissue from cancer patients. The objects are identified based on staining by a biomarker. The score predicts that a cancer patient will have a recurrence of cancer of the glandular tissue based on a geometric characteristic of individual identified objects but not on any pattern formed by the identified objects. First objects are generated from the image of glandular tissue which has been stained with a single biomarker that stains epithelial cells. Second objects are then generated using the first objects. A geometric feature of each of the second objects is measured. A shape index is then calculated for each of the second objects based on the geometric feature, and an average shape index is calculated. Based on the average shape index, a score is determined that indicates a level of cancer malignancy of the glandular tissue.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 23, 2017
    Inventors: Maria Athelogou, Nathalie Harder
  • Patent number: 9466103
    Abstract: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: October 11, 2016
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Gerd Binnig, Guenter Schmidt
  • Publication number: 20150228075
    Abstract: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Maria Athelogou, Gerd Binnig, Guenter Schmidt
  • Patent number: 9042630
    Abstract: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: May 26, 2015
    Assignee: Definiens AG
    Inventors: Gerd Binnig, Maria Athelogou, Guenter Schmidt
  • Patent number: 8909692
    Abstract: A computer-implemented system for progressively transmitting of knowledge between system nodes of a network structure comprises a plurality of system nodes and intelligent interfaces by which respective system nodes are coupled with each other for performing a communication. The intelligent interfaces transmit object features of cognition structure objects comprising knowledge, information and data depending on a respective question of a respective one system nodes progressively more faithful to detail from another of the respective system nodes to the one of the respective system nodes. Furthermore, there are disclosed a corresponding method and a computer program product relating to the system and method.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: December 9, 2014
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Ursula Benz
  • Patent number: 8879819
    Abstract: An improved histopathological score is obtained by generating image objects from images of tissue containing stained epithelial cells. First objects are generated that correspond to basal cells stained with a first stain, such as p63. Second objects are generated that correspond to luminal cells stained with a second stain, such as CK18. If the same tissue is not stained with both stains, then the images of differently stained tissue are co-registered. Third objects are defined to include only those second objects that have more than a minimum separation from any first object. A scoring region includes the third objects, and the histopathological score is determined based on tissue that falls within the scoring region. For example, a Gleason score of prostate tissue is determined by classifying tissue patterns in the scoring region. Alternatively, a Gleason pattern is assigned by counting the number of third objects that possess a predetermined form.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Thomas Kirchner, Harald Hessel, Gerd Binnig
  • Publication number: 20140169654
    Abstract: An improved histopathological score is obtained by generating image objects from images of tissue containing stained epithelial cells. First objects are generated that correspond to basal cells stained with a first stain, such as p63. Second objects are generated that correspond to luminal cells stained with a second stain, such as CK18. If the same tissue is not stained with both stains, then the images of differently stained tissue are co-registered. Third objects are defined to include only those second objects that have more than a minimum separation from any first object. A scoring region includes the third objects, and the histopathological score is determined based on tissue that falls within the scoring region. For example, a Gleason score of prostate tissue is determined by classifying tissue patterns in the scoring region. Alternatively, a Gleason pattern is assigned by counting the number of third objects that possess a predetermined form.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: Definiens AG
    Inventors: Maria Athelogou, Thomas Kirchner, Harald Hessel, Gerd Binnig
  • Patent number: 8699769
    Abstract: High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: April 15, 2014
    Assignee: Definiens AG
    Inventors: Ralf Schoenmeyer, Peter Ellenberg, Gerd Binnig, Maria Athelogou, Guenter Schmidt
  • Patent number: 8542899
    Abstract: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 24, 2013
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Gerd Binnig, Guenter Schmidt, Tamara Manuelian, Joachim Diebold
  • Publication number: 20130156279
    Abstract: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Definiens AG
    Inventors: Ralf Schoenmeyer, Gerd Binnig, Guenter Schmidt, Maria Athelogou, Peter Ellenberg
  • Publication number: 20130108139
    Abstract: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Inventors: Gerd Binnig, Maria Athelogou, Guenter Schmidt
  • Patent number: 8391575
    Abstract: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: March 5, 2013
    Assignee: Definiens AG
    Inventors: Maria Athelogou, Gerd Binnig, Guenter Schmidt, Tamara Manuelian, Joachim Diebold