Patents by Inventor Maria Candelaria Rogert Bacigalupo

Maria Candelaria Rogert Bacigalupo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11173466
    Abstract: An example method includes contacting a substrate coated with a sol-gel material with a stamp that includes a plurality of protruding features. While contacting the coated sol-gel material with the stamp, the example method further includes curing the coated sol-gel material so as to form a patterned sol-gel layer that includes a plurality of wells. The stamp is separated from the patterned sol-gel layer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20210310985
    Abstract: In an example, a sensing system includes a pH sensor. The pH sensor includes two electrodes and a conductive channel operatively connected to the two electrodes. A complex is attached to the conductive channel of the pH sensor. The complex includes a polymerase linked to at least one pH altering moiety that is to participate in generating a pH change within proximity of the conductive channel from consumption of a secondary substrate in a fluid that is exposed to the pH sensor. The at least one pH altering moiety is selected from the group consisting of an enzyme, a metal coordination complex, a co-factor, and an activator.
    Type: Application
    Filed: January 24, 2020
    Publication date: October 7, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Kaitlin M. Pugliese, Jeffrey G. Mandell, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov
  • Publication number: 20210291135
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: 11124829
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: September 21, 2021
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Patent number: 11060135
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Illumina, Inc.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20210179657
    Abstract: Provided is a method including detecting an incorporation of a labelled nucleotide into a nascent polynucleotide strand complementary to a template polynucleotide strand by a polymerase, wherein the polymerase is tethered to a solid support conductive channel by a tether and the labelled nucleotides is a compound of Formula I:
    Type: Application
    Filed: November 30, 2020
    Publication date: June 17, 2021
    Applicants: ILLUMINA, INC., ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Jeffrey MANDELL, Silvia GRAVINA, Sergio PEISAJOVICH, Kaitlin PUGLIESE, Yin Nah TEO, Xiangyuan YANG, Maria Candelaria Rogert BACIGALUPO
  • Publication number: 20210139979
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20210139975
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: December 31, 2020
    Publication date: May 13, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Publication number: 20210108258
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 15, 2021
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20210024991
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: June 7, 2019
    Publication date: January 28, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Patent number: 10900076
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: January 26, 2021
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Patent number: 10851131
    Abstract: Provided is a method including detecting an incorporation of a labelled nucleotide into a nascent polynucleotide strand complementary to a template polynucleotide strand by a polymerase, wherein the polymerase is tethered to a solid support conductive channel by a tether and the labelled nucleotides is a compound of Formula I:
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: December 1, 2020
    Assignees: ILLUMINA, INC., ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Jeffrey Mandell, Silvia Gravina, Sergio Peisajovich, Kaitlin Pugliese, Yin Nah Teo, Xiangyuan Yang, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20200318182
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 8, 2020
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 10668444
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: June 2, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20200157618
    Abstract: A labeled nucleotide includes a nucleotide, a linking molecule attached to a phosphate group of the nucleotide, and a redox-active charge tag attached to the linking molecule. The redox-active charge tag is to be oxidized or reduced by an electrically conductive channel when maintained in proximity of a sensing zone of the electrically conductive channel.
    Type: Application
    Filed: February 13, 2019
    Publication date: May 21, 2020
    Inventors: Jeffrey Mandell, Steven Barnard, John Moon, Maria Candelaria Rogert Bacigalupo
  • Patent number: 10619204
    Abstract: Embodiments of the present disclosure relate to methods for capturing and amplifying target polynucleotides on a solid surface, in particular in a well in a microarray, wherein the microarray may comprise a) a substrate comprising at least one well, a surface surrounding the well and an inner well surface; b) a first layer covering the inner well surface and comprising at least one first capture primer pair; and c) a second layer covering the first layer and the surface surrounding the well.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 14, 2020
    Assignee: Illumina Cambridge Limited
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Publication number: 20190360041
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 28, 2019
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Patent number: 10280454
    Abstract: A microarray is designed capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: May 7, 2019
    Assignee: ILLUMINA, INC.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20190046943
    Abstract: An example method includes contacting a substrate coated with a sol-gel material with a stamp that includes a plurality of protruding features. While contacting the coated sol-gel material with the stamp, the example method further includes curing the coated sol-gel material so as to form a patterned sol-gel layer that includes a plurality of wells. The stamp is separated from the patterned sol-gel layer.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 14, 2019
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: RE48561
    Abstract: A system and method for imaging biological samples on multiple surfaces of a support structure are disclosed. The support structure may be a flow cell through which a reagent fluid is allowed to flow and interact with the biological samples. Excitation radiation from at least one radiation source may be used to excite the biological samples on multiple surfaces. In this manner, fluorescent emission radiation may be generated from the biological samples and subsequently captured and detected by detection optics and at least one detector. The detected fluorescent emission radiation may then be used to generate image data. This imaging of multiple surfaces may be accomplished either sequentially or simultaneously. In addition, the techniques of the present invention may be used with any type of imaging system. For instance, both epifluorescent and total internal reflection methods may benefit from the techniques of the present invention.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: May 18, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Wenyi Feng, Jason Bryant, Steven Barnard, Maria Candelaria Rogert Bacigalupo