Patents by Inventor Maria Strom

Maria Strom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150335259
    Abstract: Systems and methods can be used to provide an indication of heart function, such as an indication of mechanical function or hemodynamics of the heart, based on electrical data. For example, a method for assessing a function of the heart can include determining a time-based electrical characteristic for a plurality of points distributed across a spatial region of the heart. The plurality of points can be grouped into at least two subsets of points based on at least one of a spatial location for the plurality of points or the time-based electrical characteristics for the plurality of points. An indication of synchrony for the heart can be quantified based on relative analysis of the determined time-based electrical characteristic for each of the at least two subsets of points.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 26, 2015
    Inventors: CHARULATHA RAMANATHAN, HAROLD WODLINGER, MARIA STROM, STEVEN G. ARLESS, PING JIA
  • Patent number: 9186515
    Abstract: A method can include providing (302) at least one parameter to control a therapy that is applied to at least one internal anatomical structure of a patient. Electrical data can be obtained from the patient (304), including electrical data acquired via a plurality of sensors during each of a plurality of iterations of the therapy. The electrical data can be analyzed (306) for a respective value of the at least one parameter of the therapy at each of the plurality of iterations of the applied therapy to compute an indication of at least one function of the at least one internal anatomical structure of the patient at each respective iteration of the applied therapy. The computed indication can be stored in memory (308). At least one parameter of the therapy can be adjusted (310) for delivery in a subsequent one of the plurality of iterations based on the indication of the at least one function.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 17, 2015
    Assignee: Cardioinsight Technologies, Inc.
    Inventors: Charulatha Ramanathan, Harold Wodlinger, Ping Jia, Maria Strom
  • Publication number: 20150216435
    Abstract: A method includes storing baseline data representing at least one local or global electrical characteristics for at least a portion of a region of interest (ROI) of a patient's anatomical structure. The baseline data is determined based on electrical measurement data obtained during at least one first measurement interval. The method also includes storing in memory other data representing the at least one local or global electrical characteristics for the at least a portion of the ROI based on electrical measurement data obtained during at least one subsequent measurement interval. The method also includes evaluating the baseline data relative to the other data to determine a change in the at least one local or global electrical characteristics. The method also includes generating an output based on the evaluating to provide an indication of progress or success associated with the applying the treatment.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 6, 2015
    Inventors: RYAN BOKAN, CHARULATHA RAMANATHAN, PING JIA, MARIA STROM
  • Publication number: 20150216438
    Abstract: A method can include analyzing non-invasive electrical data for a region of interest (ROI) of a patient's anatomical structure to identify one or more zones within the ROI that contain at least one mechanism of distinct arrhythmogenic electrical activity. The method also includes analyzing invasive electrical data for a plurality of signals of interest at different spatial sites within each of the identified zones to determine intracardiac signal characteristics for the plurality of sites within each respective zone. The method also includes generating an output that integrates the at least one mechanism of distinct arrhythmogenic electrical activity for the one or more zones with intracardiac signal characteristics for the plurality of sites within each respective zone.
    Type: Application
    Filed: February 4, 2015
    Publication date: August 6, 2015
    Inventors: RYAN BOKAN, Charulatha Ramanathan, Ping Jia, Maria Strom, Qingguo Zeng
  • Patent number: 9078573
    Abstract: Systems and methods can be used to provide an indication of heart function, such as an indication of mechanical function or hemodynamics of the heart, based on electrical data. For example, a method for assessing a function of the heart can include determining a time-based electrical characteristic for a plurality of points distributed across a spatial region of the heart. The plurality of points can be grouped into at least two subsets of points based on at least one of a spatial location for the plurality of points or the time-based electrical characteristics for the plurality of points. An indication of synchrony for the heart can be quantified based on relative analysis of the determined time-based electrical characteristic for each of the at least two subsets of points.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 14, 2015
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Charulatha Ramanathan, Harold Wodlinger, Maria Strom, Steven G. Arless, Ping Jia
  • Publication number: 20140336520
    Abstract: Systems and methods are provided to detect and analyze arrhythmia drivers. In one example, a system can include a wave front analyzer programmed to compute wave front lines extending over a surface for each of the plurality of time samples based on phase information computed from electrical data at nodes distributed across the surface. A trajectory detector can be programmed to compute wave break points for each of the wave front lines and to determine a trajectory of at least one rotor core across the surface. A stability detector can be programmed to identify at least one stable rotor portion corresponding to subtrajectories of the determined trajectory.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Inventors: QINGGUO ZENG, Ping Jia, Ryan Bokan, Brian P. George, Charulatha Ramanathan, Venkatesh Vasudevan, Maria Strom
  • Publication number: 20140200473
    Abstract: A method can determine one or more origins of focal activation. The method can include computing phase for the electrical signals at a plurality of nodes distributed across a geometric surface based on the electrical data across time. The method can determine whether or not a given candidate node of the plurality of nodes is a focal point based on the analyzing the computed phase and magnitude of the given candidate node. A graphical map can be generated to visualize focal points detected on the geometric surface.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: QINGGUO ZENG, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Maria Strom, Brian P. George
  • Publication number: 20140200467
    Abstract: A method can include storing a plurality of data sets including values computed for each of a plurality of points for a given spatial region of tissue, the values in each of the data sets characterizing electrical information for each respective point of the plurality of points for a different time interval. The method can also include combining the values computed for each of a plurality of points in a first interval, corresponding to a first map, with the values for computed for each of the respective plurality of points in another interval and to normalize the combined values relative to a common scale. The method can also include generating a composite map for the given spatial region based on the combined values that are normalized.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Maria Strom, Qingguo Zeng, Remi Dubois, Ping Jia, Ryan Bokan, Venkatesh Vasudevan, Charulatha Ramanathan, Brian P. George
  • Publication number: 20140135866
    Abstract: A method can include providing (302) at least one parameter to control a therapy that is applied to at least one internal anatomical structure of a patient. Electrical data can be obtained from the patient (304), including electrical data acquired via a plurality of sensors during each of a plurality of iterations of the therapy. The electrical data can be analyzed (306) for a respective value of the at least one parameter of the therapy at each of the plurality of iterations of the applied therapy to compute an indication of at least one function of the at least one internal anatomical structure of the patient at each respective iteration of the applied therapy. The computed indication can be stored in memory (308). At least one parameter of the therapy can be adjusted (310) for delivery in a subsequent one of the plurality of iterations based on the indication of the at least one function.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 15, 2014
    Applicant: Cardioinsight Technologies, Inc.
    Inventors: Charulatha Ramanathan, Harold Wodlinger, Ping Jia, Maria Strom
  • Publication number: 20140088395
    Abstract: A non-transitory computer-readable medium can have instructions executable by a processor. The instructions can include an electrogram reconstruction method to generate reconstructed electrogram signals for each of a multitude of points residing on or near a predetermined cardiac envelope based on geometry data and non-invasively measured body surface electrical signals. The instructions can include a phase calculator to compute phase signals for the multitude of points based on the reconstructed electrogram signals and a visualization engine to generate an output based on the computed phase signals.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Remi DUBOIS, Brian P. GEORGE, Charulatha RAMANATHAN, Qingguo ZENG, Maria STROM, Venkatesh VASUDEVAN, Ryan BOKAN, Ping JIA
  • Publication number: 20130304407
    Abstract: A computer-implemented method can include determining an amplitude for each of a plurality of input channels, corresponding to respective nodes. A measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. The method can also include comparing an amplitude for each node relative to other nodes to determine temporary bad channels. For each of the temporary bad channels, a measure of similarity can be computed between the input channel of each node and the input channel of its neighboring nodes. Channel integrity can then be identified based on the computed measures of similarity.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: BRIAN P. GEORGE, CHARULATHA RAMANTHAN, PING JIA, QINGGUO ZENG, VENKATESH VASUDEVAN, MARIA STROM, RYAN BOKAN, REMI DUBOIS
  • Publication number: 20130245473
    Abstract: Systems and methods can be used to provide an indication of heart function, such as an indication of mechanical function or hemodynamics of the heart, based on electrical data. For example, a method for assessing a function of the heart can include determining a time-based electrical characteristic for a plurality of points distributed across a spatial region of the heart. The plurality of points can be grouped into at least two subsets of points based on at least one of a spatial location for the plurality of points or the time-based electrical characteristics for the plurality of points. An indication of synchrony for the heart can be quantified based on relative analysis of the determined time-based electrical characteristic for each of the at least two subsets of points.
    Type: Application
    Filed: November 3, 2011
    Publication date: September 19, 2013
    Inventors: Charulatha Ramanathan, Wodlinger Harold, Maria Strom, Steven G. Arless, Ping Jia