Patents by Inventor Mariam G. Sadaka

Mariam G. Sadaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8440539
    Abstract: A semiconductor fabrication process includes forming a hard mask, e.g., silicon nitride, over an active layer of a silicon on insulator (SOI) wafer, removing a portion of the hard mask and the active layer to form a trench, and forming an isolation dielectric in the trench where the dielectric exerts compressive strain on a channel region of the active layer. Forming the dielectric may include performing a thermal oxidation. Before performing the thermal oxidation, semiconductor structures may be formed, e.g., by epitaxy, on sidewalls of the trench. The structures may be silicon or a silicon compound, e.g., silicon germanium. During the thermal oxidation, the semiconductor structures are consumed. In the case of a silicon germanium, the germanium may diffuse during the thermal oxidation to produce a silicon germanium channel region.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 14, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Michael A. Mendicino
  • Patent number: 8125032
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: February 28, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7927956
    Abstract: A semiconductor substrate having a silicon layer is provided. In one embodiment, the substrate is a silicon-on-insulator (SOI) substrate having an oxide layer underlying the silicon layer. An amorphous or polycrystalline silicon germanium layer is formed overlying the silicon layer. Alternatively, germanium is implanted into a top portion of the silicon layer to form an amorphous silicon germanium layer. The silicon germanium layer is then oxidized to convert the silicon germanium layer into a silicon dioxide layer and to convert at least a portion of the silicon layer into germanium-rich silicon. The silicon dioxide layer is then removed prior to forming transistors using the germanium-rich silicon. In one embodiment, the germanium-rich silicon is selectively formed using a patterned masking layer over the silicon layer and under the silicon germanium layer. Alternatively, isolation regions may be used to define local regions of the substrate in which the germanium-rich silicon is formed.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: April 19, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Alexander L. Barr, Mariam G. Sadaka, Ted R. White
  • Patent number: 7821067
    Abstract: An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: October 26, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Brian J. Goolsby, Linda B. McCormick, Bich-Yen Nguyen, Colita M. Parker, Mariam G. Sadaka, Victor H. Vartanian, Ted R. White, Melissa O. Zavala
  • Patent number: 7811382
    Abstract: A wafer having a silicon layer that is strained is used to form transistors. The silicon layer is formed by first forming a silicon germanium (SiGe) layer of at least 30 percent germanium that has relaxed strain on a donor wafer. A thin silicon layer is epitaxially grown to have tensile strain on the relaxed SiGe layer. The amount tensile strain is related to the germanium concentration. A high temperature oxide (HTO) layer is formed on the thin silicon layer by reacting dichlorosilane and nitrous oxide at a temperature of preferably between 800 and 850 degrees Celsius. A handle wafer is provided with a supporting substrate and an oxide layer that is then bonded to the HTO layer. The HTO layer, being high density, is able to hold the tensile strain of the thin silicon layer. The relaxed SiGe layer is cleaved then etched away to expose the thin silicon layer.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: October 12, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Alexander L. Barr, Bich-Yen Nguyen, Voon-Yew Thean, Ted R. White
  • Patent number: 7803670
    Abstract: A semiconductor process and apparatus provide a dual or hybrid substrate by forming a second semiconductor layer (214) that is isolated from, and crystallographically rotated with respect to, an underlying first semiconductor layer (212) by a buried insulator layer (213); forming an STI region (218) in the second semiconductor layer (214) and buried insulator layer (213); exposing the first semiconductor layer (212) in a first area (219) of a STI region (218); epitaxially growing a first epitaxial semiconductor layer (220) from the exposed first semiconductor layer (212); and selectively etching the first epitaxial semiconductor layer (220) and the second semiconductor layer (214) to form CMOS FinFET channel regions (e.g., 223) and planar channel regions (e.g., 224) from the first epitaxial semiconductor layer (220) and the second semiconductor layer (214).
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: September 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Leo Mathew, Bich-Yen Nguyen, Zhonghai Shi, Voon-Yew Thean, Mariam G. Sadaka
  • Patent number: 7781840
    Abstract: Two different transistors types are made on different crystal orientations in which both are formed on SOI. A substrate has an underlying semiconductor layer of one of the crystal orientations and an overlying layer of the other crystal orientation. The underlying layer has a portion exposed on which is epitaxially grown an oxygen-doped semiconductor layer that maintains the crystalline structure of the underlying semiconductor layer. A semiconductor layer is then epitaxially grown on the oxygen-doped semiconductor layer. An oxidation step at elevated temperatures causes the oxide-doped region to separate into oxide and semiconductor regions. The oxide region is then used as an insulation layer in an SOI structure and the overlying semiconductor layer that is left is of the same crystal orientation as the underlying semiconductor layer. Transistors of the different types are formed on the different resulting crystal orientations.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: August 24, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ted R. White, Alexander L. Barr, Bich-Yen Nguyen, Marius K. Orlowski, Mariam G. Sadaka, Voon-Yew Thean
  • Patent number: 7754587
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (16) by selectively depositing an epitaxial silicon layer (70) to fill a trench (96), and then blanket depositing silicon to cover the entire wafer with near uniform thickness of crystalline silicon (102) over the epi silicon layer (70) and polycrystalline silicon (101, 103) over the nitride mask layer (95). The polysilicon material (101, 103) added by the two-step process increases the polish rate of subsequent CMP polishing to provide a more uniform polish surface (100) over the entire wafer surface, regardless of variations in structure widths and device densities. By forming first gate electrodes (151) over a first SOI layer (90) using deposited (100) silicon and forming second gate electrodes (161) over an epitaxially grown (110) silicon layer (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: July 13, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, Peter J. Beckage, Mariam G. Sadaka
  • Patent number: 7737496
    Abstract: An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: June 15, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Brian J. Goolsby, Linda B. McCormick, Bich-Yen Nguyen, Colita M. Parker, Mariam G. Sadaka, Victor H. Vartanian, Ted R. White, Melissa O. Zavala
  • Patent number: 7700420
    Abstract: A substrate includes a first region and a second region. The first region comprises a III-nitride layer, and the second region comprises a first semiconductor layer. A first transistor (such as an n-type transistor) is formed in and on the III-nitride layer, and a second transistor (such as a p-type transistor) is formed in and on the first semiconductor layer. The III-nitride layer may be indium nitride. In the first region, the substrate may include a second semiconductor layer, a graded transition layer over the second semiconductor layer, and a buffer layer over the transition layer, where the III-nitride layer is over the buffer layer. In the second region, the substrate may include the second semiconductor layer and an insulating layer over the second semiconductor layer, where the first semiconductor layer is over the insulating layer.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: April 20, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Bich-Yen Nguyen, Mariam G. Sadaka, Victor H. Vartanian, Ted R. White
  • Patent number: 7615806
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: November 10, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam G. Sadaka, Da Zhang
  • Publication number: 20090218625
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Application
    Filed: April 9, 2009
    Publication date: September 3, 2009
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7575975
    Abstract: Forming a semiconductor structure includes providing a substrate having a strained semiconductor layer overlying an insulating layer, providing a first device region for forming a first plurality of devices having a first conductivity type, providing a second device region for forming a second plurality of devices having a second conductivity type, and thickening the strained semiconductor layer in the second device region so that the strained semiconductor layer in the second device region has less strain that the strained semiconductor layer in the first device region. Alternatively, forming a semiconductor structure includes providing a first region having a first conductivity type, forming an insulating layer overlying at least an active area of the first region, anisotropically etching the insulating layer, and after anisotropically etching the insulating layer, deposing a gate electrode material overlying at least a portion of the insulating layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: August 18, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Voon-Yew Thean, Jian Chen, Bich-Yen Nguyen, Mariam G. Sadaka, Da Zhang
  • Patent number: 7575968
    Abstract: A semiconductor process and apparatus provide a high performance CMOS devices (108, 109) with hybrid or dual substrates by etching a deposited oxide layer (62) using inverse slope isolation techniques to form tapered isolation regions (76) and expose underlying semiconductor layers (41, 42) in a bulk wafer structure prior to epitaxially growing the first and second substrates (84, 82) having different surface orientations that may be planarized with a single CMP process. By forming first gate electrodes (104) over a first substrate (84) that is formed by epitaxially growing (100) silicon and forming second gate electrodes (103) over a second substrate (82) that is formed by epitaxially growing (110) silicon, a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes having improved hole mobility.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: August 18, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Debby Eades, Joe Mogab, Bich-Yen Nguyen, Melissa O. Zavala, Gregory S. Spencer
  • Patent number: 7560318
    Abstract: An electronic device can have an insulating layer lying between a first semiconductor layer and a base layer. A second semiconductor layer, having a different composition and stress as compared to the first semiconductor layer, can overlie at least a portion of the first semiconductor layer. In one embodiment, a first electronic component can include a first active region that includes a first portion of the first and the second semiconductor layers. A second electronic component can include a second active region that can include a second portion of the first semiconductor layer. Different processes can be used to form the electronic device. In another embodiment, annealing a workpiece can be performed and the stress of at least one of the semiconductor layers can be changed. In a different embodiment, annealing the workpiece can be performed either before or after the formation of the second semiconductor layer.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: July 14, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Venkat R. Kolagunta, William J. Taylor, Victor H. Vartanian
  • Patent number: 7544548
    Abstract: A semiconductor process and apparatus provide a shallow trench isolation region (96) with a trench liner (95, 104) for use in a hybrid substrate device (21) by lining a first trench with a first trench liner (95), and then lining a second trench formed within the first trench by depositing a second trench liner (104) that is anisotropically etched to expose an underlying substrate (70) on which is epitaxially grown a silicon layer (110) to fill the second trench. By forming first gate electrodes (251) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (261) over an epitaxially grown (110) silicon substrate (110), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (261) having improved hole mobility.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: June 9, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Patent number: 7524707
    Abstract: A semiconductor process and apparatus includes forming first and second metal gate electrodes (151, 161) over a hybrid substrate (17) by forming the first gate electrode (151) over a first high-k gate dielectric (121) and forming the second gate electrode (161) over at least a second high-k gate dielectric (122) different from the first gate dielectric (121). By forming the first gate electrode (151) over a first SOI substrate (90) formed by depositing (100) silicon and forming the second gate electrode (161) over an epitaxially grown (110) SiGe substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: April 28, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Olubunmi O. Adetutu, Mariam G. Sadaka, Ted R. White, Bich-Yen Nguyen
  • Publication number: 20090035914
    Abstract: A semiconductor fabrication process includes forming a hard mask, e.g., silicon nitride, over an active layer of a silicon on insulator (SOI) wafer, removing a portion of the hard mask and the active layer to form a trench, and forming an isolation dielectric in the trench where the dielectric exerts compressive strain on a channel region of the active layer. Forming the dielectric may include performing a thermal oxidation. Before performing the thermal oxidation, semiconductor structures may be formed, e.g., by epitaxy, on sidewalls of the trench. The structures may be silicon or a silicon compound, e.g., silicon germanium. During the thermal oxidation, the semiconductor structures are consumed. In the case of a silicon germanium, the germanium may diffuse during the thermal oxidation to produce a silicon germanium channel region.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventors: Mariam G. Sadaka, Michael A. Mendicino
  • Publication number: 20080268587
    Abstract: A semiconductor process and apparatus provide a high performance CMOS devices (108, 109) with hybrid or dual substrates by etching a deposited oxide layer (62) using inverse slope isolation techniques to form tapered isolation regions (76) and expose underlying semiconductor layers (41, 42) in a bulk wafer structure prior to epitaxially growing the first and second substrates (84, 82) having different surface orientations that may be planarized with a single CMP process. By forming first gate electrodes (104) over a first substrate (84) that is formed by epitaxially growing (100) silicon and forming second gate electrodes (103) over a second substrate (82) that is formed by epitaxially growing (110) silicon, a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes having improved hole mobility.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Mariam G. Sadaka, Debby Eades, Joe Mogab, Bich-Yen Nguyen, Melissa O. Zavala, Gregory S. Spencer
  • Patent number: 7435639
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: October 14, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Omar Zia, Mariam G. Sadaka, Marius K. Orlowski