Patents by Inventor Marian Fecioru-Morariu

Marian Fecioru-Morariu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150136210
    Abstract: Solar devices with high resistance to light-induced degradation are described. A wide optical bandgap interface layer positioned between a p-doped semiconductor layer and an intrinsic semiconductor layer is made resistant to light-induced degradation through treatment with a hydrogen-containing plasma. In one embodiment, a p-i-n structure is formed with the interface layer at the p/i interface. Optionally, an additional interface layer treated with a hydrogen-containing plasma is formed between the intrinsic layer and the n-doped layer. Alternatively, a hydrogen-containing plasma is used to treat an upper portion of the intrinsic layer prior to deposition of the n-doped semiconductor layer. The interface layer is also applicable to-multi-junction solar cells with plural p-i-n structures. The p-doped and n-doped layers can optionally include sublayers of different compositions and different morphologies (e.g., microcrystalline or amorphous).
    Type: Application
    Filed: May 10, 2013
    Publication date: May 21, 2015
    Inventors: Xavier Multone, Daniel Borrello, Stefano Benagli, Johannes Meier, Ulrich Kroll, Marian Fecioru-Morariu
  • Publication number: 20140102522
    Abstract: The invention relates to a method for manufacturing a thin film solar cell, comprising the sequential steps of a) depositing a positively doped Si layer (3), b1) depositing a first intrinsic a-Si:H layer (21) at a first deposition rate, b2) depositing a second intrinsic a-Si:H layer (22) at a second deposition rate, and c) depositing a negatively doped Si layer (5), whereby the second deposition rate is greater than the first deposition rate. The thin film solar cell manufactured is characterized by an increased initial and stabilized efficiency while at the same time the overall deposition rate, even by depositing two different intrinsic layers (21, 22), is kept at a reasonable and economic level.
    Type: Application
    Filed: November 14, 2011
    Publication date: April 17, 2014
    Applicant: TEL SOLAR AG
    Inventors: Marian Fecioru-Morariu, Bogdan Mereu
  • Publication number: 20130174899
    Abstract: In order to improve a thin film solar cell with an amorphous silicon absorber layer being in single or in tandem configuration, the addressed absorber layer of a-Si:H is manufactured by plasma enhanced vapor deposition in an RF-SiH4 plasma, wherein the deposition is performed at at least one of at the process pressure below 0.5 mbar and of at an RF power density below 370 W/14000 cm2.
    Type: Application
    Filed: September 2, 2011
    Publication date: July 11, 2013
    Applicant: TEL SOLAR AG
    Inventor: Marian Fecioru-Morariu