Patents by Inventor Marianna Kontopoulou

Marianna Kontopoulou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11859081
    Abstract: A biobased additive is provided that is both a nucleating and a reinforcing agent when added to thermoplastic polyester (e.g., biopolyesters). A composite material, which is an additive-reinforced biopolyester, was prepared and improved thermo-mechanical properties were quantified. This composite material is a new class of biobased material that offers a sustainable, environmentally-friendly solution for packaging and other applications.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Queen's University at Kingston
    Inventors: Naqi Najafi Chaloupli, Marianna Kontopoulou, Heather Leigh Simmons, Praphulla
  • Patent number: 11760639
    Abstract: A method of exfoliating layered, shearable material is described. Examples are provided including exfoliation of graphite to form graphene nanoplatelets. Also described is a machine for preparing nanoplatelets that includes a chamber whose volume can be increased by pressure exerted by the exfoliated product. Composites of graphene nanoplatelets and polyamide exhibited improved flexural modulus compared to that of graphite composites while impact strength was unaffected.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: September 19, 2023
    Assignee: Queen's University at Kingston
    Inventors: Osayuki Osazuwa, Marianna Kontopoulou
  • Publication number: 20230193022
    Abstract: A biobased additive is provided that is both a nucleating and a reinforcing agent when added to thermoplastic polyester (e.g., biopolyesters). A composite material, which is an additive-reinforced biopolyester, was prepared and improved thermo-mechanical properties were quantified. This composite material is a new class of biobased material that offers a sustainable, environmentally-friendly solution for packaging and other applications.
    Type: Application
    Filed: December 16, 2022
    Publication date: June 22, 2023
    Inventors: Naqi Najafi Chaloupli, Marianna Kontopoulou, Heather Leigh Simmons, Praphulla
  • Patent number: 11535745
    Abstract: A biobased additive is provided that is both a nucleating and a reinforcing agent when added to thermoplastic polyester (e.g., biopolyesters). A composite material, which is an additive-reinforced biopolyester, was prepared and improved thermo-mechanical properties were quantified. This composite material is a new class of biobased material that offers a sustainable, environmentally-friendly solution for packaging and other applications.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 27, 2022
    Assignee: Queen's University at Kingston
    Inventors: Naqi Najafi Chaloupli, Marianna Kontopoulou, Heather Leigh Simmons, Praphulla
  • Publication number: 20210139696
    Abstract: A biobased additive is provided that is both a nucleating and a reinforcing agent when added to thermoplastic polyester (e.g., biopolyesters). A composite material, which is an additive-reinforced biopolyester, was prepared and improved thermo-mechanical properties were quantified. This composite material is a new class of biobased material that offers a sustainable, environmentally-friendly solution for packaging and other applications.
    Type: Application
    Filed: July 11, 2018
    Publication date: May 13, 2021
    Inventors: Naqi Najafi Chaloupli, Marianna Kontopoulou, Heather Leigh Simmons, Praphulla .
  • Publication number: 20200407226
    Abstract: A method of exfoliating layered, shearable material is described. Examples are provided including exfoliation of graphite to form graphene nanoplatelets. Also described is a machine for preparing nanoplatelets that includes a chamber whose volume can be increased by pressure exerted by the exfoliated product. Composites of graphene nanoplatelets and polyamide exhibited improved flexural modulus compared to that of graphite composites while impact strength was unaffected.
    Type: Application
    Filed: February 4, 2019
    Publication date: December 31, 2020
    Inventors: Osayuki Osazuwa, Marianna Kontopoulou