Patents by Inventor Marija Borna Tutuc

Marija Borna Tutuc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10580656
    Abstract: A semiconductor wafer having a main surface is provided. A first etch resistant mask is provided on the main surface. A first reactive ion etching step that forms a first group of trenches using the first etch resistant mask is performed. Each of the trenches in the first group is covered with a second etch resistant mask after performing the first reactive ion etching step. A second reactive ion etching step that forms a second group of trenches using one or both of the first etch resistant mask and the second etch resistant mask is performed. The trenches in the second group are laterally offset from the trenches in the first group. The first and second reactive ion etching processes are performed such that a depth of the trenches of the first group is substantially equal to a depth of the trenches in the second group.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies AG
    Inventors: Marija Borna Tutuc, Daniel Tutuc, Andrew Christopher Graeme Wood
  • Publication number: 20200013631
    Abstract: A semiconductor wafer having a main surface is provided. A first etch resistant mask is provided on the main surface. A first reactive ion etching step that forms a first group of trenches using the first etch resistant mask is performed. Each of the trenches in the first group is covered with a second etch resistant mask after performing the first reactive ion etching step. A second reactive ion etching step that forms a second group of trenches using one or both of the first etch resistant mask and the second etch resistant mask is performed. The trenches in the second group are laterally offset from the trenches in the first group. The first and second reactive ion etching processes are performed such that a depth of the trenches of the first group is substantially equal to a depth of the trenches in the second group.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Marija Borna Tutuc, Daniel Tutuc, Andrew Christopher Graeme Wood
  • Patent number: 10132765
    Abstract: A multi-layer arrangement of III-V semiconductor layers includes a strained III-V semiconductor layer having a concentration of a constituent element which effects intensity of a conductive channel formed in the multi-layer arrangement. Lattice parameters of the strained III-V semiconductor layer are determined by generating a first scan in a Qx direction for a chosen reflection in reciprocal space based on diffracted X-Ray beam intensity measurements in the Qx direction. A second scan is generated in a Qz direction for the chosen reflection in the reciprocal space based on diffracted X-Ray beam intensity measurements in the Qz direction. The second scan is aligned with a diffracted X-Ray peak in the first scan which identifies the strained III-V semiconductor layer. The degree of strain of the strained III-V semiconductor layer is determined based on the first scan and the concentration of the constituent element based on the second scan.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: November 20, 2018
    Assignee: Infineon Technologies Austria AG
    Inventor: Marija Borna Tutuc
  • Publication number: 20170343491
    Abstract: A multi-layer arrangement of III-V semiconductor layers includes a strained III-V semiconductor layer having a concentration of a constituent element which effects intensity of a conductive channel formed in the multi-layer arrangement. Lattice parameters of the strained III-V semiconductor layer are determined by generating a first scan in a Qx direction for a chosen reflection in reciprocal space based on diffracted X-Ray beam intensity measurements in the Qx direction. A second scan is generated in a Qz direction for the chosen reflection in the reciprocal space based on diffracted X-Ray beam intensity measurements in the Qz direction. The second scan is aligned with a diffracted X-Ray peak in the first scan which identifies the strained III-V semiconductor layer. The degree of strain of the strained III-V semiconductor layer is determined based on the first scan and the concentration of the constituent element based on the second scan.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 30, 2017
    Inventor: Marija Borna Tutuc