Patents by Inventor MARIJN NICOLAAS VAN DONGEN

MARIJN NICOLAAS VAN DONGEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11515585
    Abstract: A method for accurately measuring a battery temperature using a temperature sensor embodied in a battery monitoring integrated circuit is disclosed. The method includes performing calibration to estimate a thermal resistance between the battery monitoring integrated circuit and a terminal of a battery, measuring a temperature using the temperature sensor, measuring a voltage at the terminal or at a supply pin of the battery monitoring integrated circuit while a current is being used to charge or discharge the battery, calculating a power by multiplying the voltage and the current, and calculating a self-heating temperature adjustment to the temperature by multiplying the power and the thermal resistance.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 29, 2022
    Assignee: Datang NXP Semiconductors Co., Ltd.
    Inventors: Marijn Nicolaas van Dongen, Hendrik Boezen, Joop Petrus Maria van Lammeren, Henricus Cornelis Johannes Büthker
  • Patent number: 11047919
    Abstract: An open wire detection system and method are provided. A semiconductor device includes a first diode having an anode terminal coupled to a first terminal and a cathode terminal coupled to a second terminal. The first and second terminals are configured for connection to a first battery cell terminal by way of a first conductive path and a second conductive path. A detect circuit is coupled to the first diode and is configured to provide a first open wire indication when a first voltage across the first diode exceeds a first threshold.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 29, 2021
    Assignee: NXP B.V.
    Inventors: Henricus Cornelis Johannes Büthker, Marijn Nicolaas van Dongen
  • Patent number: 10816363
    Abstract: A system for determining angular position includes a magnet having at least four poles and an axis of rotation, wherein the magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is at least partially canceled.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: October 27, 2020
    Assignee: NXP B.V.
    Inventors: Jaap Ruigrok, Edwin Schapendonk, Stephan Marauska, Dennis Helmboldt, Marijn Nicolaas van Dongen
  • Publication number: 20200274207
    Abstract: A method for accurately measuring a battery temperature using a temperature sensor embodied in a battery monitoring integrated circuit is disclosed. The method includes performing calibration to estimate a thermal resistance between the battery monitoring integrated circuit and a terminal of a battery, measuring a temperature using the temperature sensor, measuring a voltage at the terminal or at a supply pin of the battery monitoring integrated circuit while a current is being used to charge or discharge the battery, calculating a power by multiplying the voltage and the current, and calculating a self-heating temperature adjustment to the temperature by multiplying the power and the thermal resistance.
    Type: Application
    Filed: February 21, 2019
    Publication date: August 27, 2020
    Inventors: Marijn Nicolaas van Dongen, Hendrik Boezen, Joop Petrus Maria van Lammeren, Henricus Cornelis Johannes Büthker
  • Patent number: 10705125
    Abstract: An integrated circuit includes a load circuit having multiple functional modules, a first voltage regulator configured to provide a supply voltage to the multiple functional modules, and a supply current monitoring circuit including a second voltage regulator and a current monitor, the second voltage regulator being configured to provide a test supply voltage. A switch matrix is interconnected between the first voltage regulator, the supply current monitoring circuit, and the functional modules. Each of the functional modules in successive order is a module under test, and the switch matrix is configured to disconnect the first voltage regulator from the module under test and connect the supply current monitoring circuit to the module under test such that the second voltage regulator provides the test supply voltage to the module under test and the current monitor measures a supply current of the module under test in response to the test supply voltage.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: July 7, 2020
    Assignee: NXP B.V.
    Inventors: Edwin Schapendonk, Marijn Nicolaas van Dongen, Maciej Skrobacki, Wouter van der Heijden, Petrus Antonius Thomas Marinus Vermeeren
  • Patent number: 10670425
    Abstract: A system for determining angular position includes a dipole magnet having an axis of rotation, wherein the dipole magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is substantially cancelled.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 2, 2020
    Assignee: NXP B.V.
    Inventors: Jaap Ruigrok, Edwin Schapendonk, Marijn Nicolaas van Dongen
  • Publication number: 20200103466
    Abstract: An open wire detection system and method are provided. A semiconductor device includes a first diode having an anode terminal coupled to a first terminal and a cathode terminal coupled to a second terminal. The first and second terminals are configured for connection to a first battery cell terminal by way of a first conductive path and a second conductive path. A detect circuit is coupled to the first diode and is configured to provide a first open wire indication when a first voltage across the first diode exceeds a first threshold.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Henricus Cornelis Johannes Büthker, Marijn Nicolaas van Dongen
  • Publication number: 20190301893
    Abstract: A system for determining angular position includes a dipole magnet having an axis of rotation, wherein the dipole magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is substantially cancelled.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Inventors: Jaap Ruigrok, Edwin Schapendonk, Marijn Nicolaas van Dongen
  • Publication number: 20190265071
    Abstract: A system for determining angular position includes a magnet having at least four poles and an axis of rotation, wherein the magnet produces a magnetic field. A first magnetic field sensor produces a first output signal and a second magnetic field sensor produces a second output signal in response to the magnetic field. The magnetic field sensors are operated in a saturation mode in which the magnetic field sensors are largely insensitive to the field strength of the magnetic field. Thus, the first output signal is indicative of a first direction of the magnetic field and the second output signal is indicative of a second direction of the magnetic field. Methodology performed by a processing circuit entails combining the first and second output signals to obtain a rotation angle value of the magnet in which angular error from a stray magnetic field is at least partially canceled.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 29, 2019
    Inventors: Jaap Ruigrok, Edwin Schapendonk, Stephan Marauska, Dennis Helmboldt, Marijn Nicolaas van Dongen
  • Patent number: 10317482
    Abstract: A resistive sensor includes a current input sigma-delta converter that uses a switched offset voltage source to provide scalable gain and more linear operation. The sigma-delta converter includes an integrator, a quantizer, and a decimator. In one embodiment, the resistive sensor and offset voltage source are coupled to provide an input current at a first node. The integrator has a first input terminal coupled to the first node, and an output terminal. The quantizer has a first input terminal coupled to the output terminal of the integrator, a second input terminal for receiving a clock signal, and an output terminal coupled to provide a feedback signal to control the offset voltage source. The decimator has an input terminal coupled to the output terminal of the quantizer, and an output terminal for providing an output signal. The switched offset voltage source provides scalable gain and good linearity.
    Type: Grant
    Filed: November 19, 2016
    Date of Patent: June 11, 2019
    Assignee: NXP B.V.
    Inventors: Marijn Nicolaas Van Dongen, Edwin Schapendonk, Selcuk Ersoy
  • Publication number: 20180143270
    Abstract: A resistive sensor includes a current input sigma-delta converter that uses a switched offset voltage source to provide scalable gain and more linear operation. The sigma-delta converter includes an integrator, a quantizer, and a decimator. In one embodiment, the resistive sensor and offset voltage source are coupled to provide an input current at a first node. The integrator has a first input terminal coupled to the first node, and an output terminal. The quantizer has a first input terminal coupled to the output terminal of the integrator, a second input terminal for receiving a clock signal, and an output terminal coupled to provide a feedback signal to control the offset voltage source. The decimator has an input terminal coupled to the output terminal of the quantizer, and an output terminal for providing an output signal. The switched offset voltage source provides scalable gain and good linearity.
    Type: Application
    Filed: November 19, 2016
    Publication date: May 24, 2018
    Inventors: MARIJN NICOLAAS VAN DONGEN, EDWIN SCHAPENDONK, SELCUK ERSOY