Patents by Inventor Marilene Elizabete Pavan Rodrigues

Marilene Elizabete Pavan Rodrigues has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150064759
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of cytosolic acetyl-CoA to 2-propanol; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic
  • Publication number: 20150064760
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic