Patents by Inventor Marin Kobilarov

Marin Kobilarov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10671076
    Abstract: Techniques for generating trajectories for autonomous vehicles and for predicting trajectories for third-party objects using temporal logic and tree search are described herein. Perception data about an environment can be captured to determine static objects and dynamic objects. For a particular dynamic object, which can represent a third-party vehicle, predictive trajectories can be generated to represent possible trajectories based on available options and rules of the road. Operations can include determining probabilities that a third-party vehicle will execute a predictive trajectory and updating the probabilities over time as motion data is captured. Predictive trajectories can be provided to the autonomous vehicle and commands for the autonomous vehicle can be based on the predictive trajectories.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: June 2, 2020
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton
  • Patent number: 10614717
    Abstract: Drive envelope determination is described. In an example, a vehicle can capture sensor data while traversing an environment and can provide the sensor data to computing system(s). The sensor data can indicate agent(s) in the environment and the computing system(s) can determine, based on the sensor data, a planned path through the environment relative to the agent(s). The computing system(s) can also determine lateral distance(s) to the agent(s) from the planned path. In an example, the computing system(s) can determine modified distance(s) based at least in part on the lateral distance(s) and information about the agents. The computing system can determine a drive envelope based on the modified distance(s) and can determine a trajectory in the drive envelope.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: April 7, 2020
    Assignee: Zoox, Inc.
    Inventors: Timothy Caldwell, Dan Xie, William Anthony Silva, Abishek Krishna Akella, Jefferson Bradfield Packer, Rick Zhang, Marin Kobilarov
  • Patent number: 10606259
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 31, 2020
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20190361450
    Abstract: In autonomous driving, it is often useful to plan trajectories in a curvilinear coordinate frame with respect to some reference trajectory, like a path produced by a hi-level route planner. This disclosure includes techniques for developing efficient approximate path coordinate motion primitives appropriate for fast planning in autonomous driving scenarios. These primitives are approximate in that particular quantities, like the path length, acceleration, and track offset trajectory, are known with some degree of certainty, and values that depend on the curvature of the reference path can be bound. Such approximate motion primitives can be used to control the autonomous vehicle to follow the trajectory in an environment.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Inventors: Matthew Sheckells, Timothy Caldwell, Marin Kobilarov
  • Publication number: 20190361443
    Abstract: Trajectory generation and/or execution architecture is described. In an example, a first signal can be determined at a first frequency, wherein the first signal comprises information associated with causing the system to move to a location. Further, a second signal can be determined at a second frequency different from the first frequency and based at least in part on the first signal. A system can be controlled to move to the location, based at least in part on the second signal.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 28, 2019
    Inventors: Gary Linscott, Robert Edward Somers, Joona Markus Petteri Kiiski, Marin Kobilarov, Timothy Caldwell, Jacob Lee Askeland, Ashutosh Gajanan Rege, Joseph Funke
  • Publication number: 20190355257
    Abstract: Drive envelope determination is described. In an example, a vehicle can capture sensor data while traversing an environment and can provide the sensor data to computing system(s). The sensor data can indicate agent(s) in the environment and the computing system(s) can determine, based on the sensor data, a planned path through the environment relative to the agent(s). The computing system(s) can also determine lateral distance(s) to the agent(s) from the planned path. In an example, the computing system(s) can determine modified distance(s) based at least in part on the lateral distance(s) and information about the agents. The computing system can determine a drive envelope based on the modified distance(s) and can determine a trajectory in the drive envelope.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 21, 2019
    Inventors: Timothy Caldwell, Dan Xie, William Anthony Silva, Abishek Krishna Akella, Jefferson Bradfield Packer, Rick Zhang, Marin Kobilarov
  • Patent number: 10386836
    Abstract: A method for operating a driverless vehicle may include receiving, at the driverless vehicle, sensor signals related to operation of the driverless vehicle, and road network data from a road network data store. The method may also include determining a driving corridor within which the driverless vehicle travels according to a trajectory, and causing the driverless vehicle to traverse a road network autonomously according to a path from a first geographic location to a second geographic location. The method may also include determining that an event associated with the path has occurred, and sending communication signals to a teleoperations system including a request for guidance and one or more of sensor data and the road network data. The method may include receiving, at the driverless vehicle, teleoperations signals from the teleoperations system, such that the vehicle controller determines a revised trajectory based at least in part on the teleoperations signals.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: August 20, 2019
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10379538
    Abstract: In autonomous driving, it is often useful to plan trajectories in a curvilinear coordinate frame with respect to some reference trajectory, like a path produced by a hi-level route planner. This disclosure includes techniques for developing efficient approximate path coordinate motion primitives appropriate for fast planning in autonomous driving scenarios. These primitives are approximate in that particular quantities, like the path length, acceleration, and track offset trajectory, are known with some degree of certainty, and values that depend on the curvature of the reference path can be bound. Such approximate motion primitives can be used to control the autonomous vehicle to follow the trajectory in an environment.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 13, 2019
    Assignee: Zoox, Inc.
    Inventors: Matthew Sheckells, Timothy Caldwell, Marin Kobilarov
  • Patent number: 10353390
    Abstract: Techniques for generating and executing trajectories to guide autonomous vehicles are described. In an example, a first computer system associated with an autonomous vehicle can generate, at a first operational frequency, a route to guide the autonomous vehicle from a current location to a target location. The first computer system can further determine, at a second operational frequency, an instruction for guiding the autonomous vehicle along the route and can generate, at a third operational frequency, a trajectory based at least partly on the instruction and real-time processed sensor data. A second computer system that is associated with the autonomous vehicle and is in communication with the first computer system can execute, at a fourth operational frequency, the trajectory to cause the autonomous vehicle to travel along the route. The separation of the first computer system and the second computer system can provide enhanced safety, redundancy, and optimization.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 16, 2019
    Assignee: Zoox, Inc.
    Inventors: Gary Linscott, Robert Edward Somers, Joona Markus Petteri Kiiski, Marin Kobilarov, Timothy Caldwell, Jacob Lee Askeland, Ashutosh Gajanan Rege, Joseph Funke
  • Publication number: 20190101919
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Application
    Filed: November 16, 2018
    Publication date: April 4, 2019
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Publication number: 20190011910
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20190011912
    Abstract: A method for operating a driverless vehicle may include receiving, at the driverless vehicle, sensor signals related to operation of the driverless vehicle, and road network data from a road network data store. The method may also include determining a driving corridor within which the driverless vehicle travels according to a trajectory, and causing the driverless vehicle to traverse a road network autonomously according to a path from a first geographic location to a second geographic location. The method may also include determining that an event associated with the path has occurred, and sending communication signals to a teleoperations system including a request for guidance and one or more of sensor data and the road network data. The method may include receiving, at the driverless vehicle, teleoperations signals from the teleoperations system, such that the vehicle controller determines a revised trajectory based at least in part on the teleoperations signals.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 10, 2019
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10133275
    Abstract: Techniques for determining a trajectory for an autonomous vehicle are described herein. In general, determining a route can include utilizing a search algorithm such as Monte Carlo Tree Search (MCTS) to search for possible trajectories, while using temporal logic formulas, such as Linear Temporal Logic (LTL), to validate or reject the possible trajectories. Trajectories can be selected based on various costs and constraints optimized for performance. Determining a trajectory can include determining a current state of the autonomous vehicle, which can include determining static and dynamic symbols in an environment. A context of an environment can be populated with the symbols, features, predicates, and LTL formula. Rabin automata can be based on the LTL formula, and the automata can be used to evaluate various candidate trajectories. Nodes of the MCTS can be generated and actions can be explored based on machine learning implemented as, for example, a deep neural network.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 20, 2018
    Assignee: Zoox, Inc.
    Inventors: Marin Kobilarov, Timothy Caldwell, Vasumathi Raman, Christopher Paxton, Joona Markus Petteri Kiiski, Jacob Lee Askeland, Robert Edward Somers
  • Publication number: 20180251126
    Abstract: Techniques for generating and executing trajectories to guide autonomous vehicles are described. In an example, a first computer system associated with an autonomous vehicle can generate, at a first operational frequency, a route to guide the autonomous vehicle from a current location to a target location. The first computer system can further determine, at a second operational frequency, an instruction for guiding the autonomous vehicle along the route and can generate, at a third operational frequency, a trajectory based at least partly on the instruction and real-time processed sensor data. A second computer system that is associated with the autonomous vehicle and is in communication with the first computer system can execute, at a fourth operational frequency, the trajectory to cause the autonomous vehicle to travel along the route. The separation of the first computer system and the second computer system can provide enhanced safety, redundancy, and optimization.
    Type: Application
    Filed: June 23, 2017
    Publication date: September 6, 2018
    Inventors: Gary Linscott, Robert Edward Somers, Joona Markus Petteri Kiiski, Marin Kobilarov, Timothy Caldwell, Jacob Lee Askeland, Ashutosh Gajanan Rege, Joseph Funke