Patents by Inventor Marin Soljacic
Marin Soljacic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10261389Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.Type: GrantFiled: June 22, 2017Date of Patent: April 16, 2019Assignee: Massachusetts Institute of TechnologyInventors: Scott Skirlo, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
-
Publication number: 20190019100Abstract: A photonic parallel network can be used to sample combinatorially hard distributions of Ising problems. The photonic parallel network, also called a photonic processor, finds the ground state of a general Ising problem and can probe critical behaviors of universality classes and their critical exponents. In addition to the attractive features of photonic networks—passivity, parallelization, high-speed and low-power—the photonic processor exploits dynamic noise that occurs during the detection process to find ground states more efficiently.Type: ApplicationFiled: July 11, 2018Publication date: January 17, 2019Inventors: Charles ROQUES-CARMES, Yichen Shen, Li Jing, Tena Dubcek, Scott A. Skirlo, Hengameh Bagherianlemraski, Marin Soljacic
-
Patent number: 10141790Abstract: Described herein are embodiments of a source high-Q resonator, optionally coupled to an energy source, a second high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. A third high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and at least one of the second resonator and third resonator may be coupled to transfer electromagnetic energy from said source resonator to said at least one of the second resonator and third resonator.Type: GrantFiled: October 25, 2017Date of Patent: November 27, 2018Assignee: Massachusetts Institute of TechnologyInventors: John D. Joannopoulos, Aristeidis Karalis, Marin Soljacic
-
Patent number: 10097044Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.Type: GrantFiled: June 20, 2016Date of Patent: October 9, 2018Assignee: Massachusetts Institute of TechnologyInventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
-
Publication number: 20180287329Abstract: An apparatus for generating Smith-Purcell radiation having at least one spectral component at a wavelength A includes a periodic structure including a dielectric material and an electron source, in electromagnetic communication with the periodic structure, to emit an electron beam propagating within about 5? from a surface of the periodic structure to induce emission of the Smith-Purcell radiation. The electron beam has an electron energy tunable between about 0.5 keV and about 40 keV so as to change a wavelength of the Smith-Purcell radiation.Type: ApplicationFiled: April 3, 2018Publication date: October 4, 2018Inventors: Yi YANG, Aviram MASSUDA, Charles ROQUES-CARMES, Nicholas H. RIVERA, Tena DUBCEK, John D. JOANNOPOULOS, Karl Kimon BERGGREN, Ido E. KAMINER, Marin SOLJACIC, Yujia YANG, Steven E. KOOI, Phillip Donald Keathley
-
Patent number: 10084348Abstract: Wireless energy transfer apparatus include, in at least one aspect, a device resonator configured to supply power for a load by receiving wirelessly transferred power from a source resonator; a temperature sensor positioned to measure a temperature of a component of the apparatus; a tunable component coupled to the device resonator to adjust a resonant frequency of the device resonator, an effective impedance the device resonator, or both; and control circuitry configured to, in response to detecting a temperature condition using the temperature sensor, (i) tune the tunable component to adjust the resonant frequency of the device resonator, the effective impedance of the device resonator, or both, and (ii) signal the source resonator regarding the temperature condition to cause an adjustment of a resonant frequency of the source resonator, a power output of the source resonator, or both.Type: GrantFiled: October 31, 2016Date of Patent: September 25, 2018Assignee: WiTricity CorporationInventors: Morris P. Kesler, Katherine L. Hall, Andre B. Kurs, Aristeidis Karalis, Marin Soljacic, Andrew J. Campanella, David A. Schatz
-
Publication number: 20180260703Abstract: A system for training a neural network model, the neural network model comprising a plurality of layers including a first hidden layer associated with a first set of weights, the system comprising at least one computer hardware processor programmed to perform: obtaining training data; selecting a unitary rotational representation for representing a matrix of the first set weights, the selected unitary rotational representation comprising a plurality of parameters; training the neural network model using the training data using an iterative neural network training algorithm to obtain a trained neural network model, each iteration of the iterative neural network training algorithm comprising: updating values of the plurality of parameters in the selected unitary rotational representation for representing the matrix of the set of weights for the at least one hidden layer, and saving the trained neural network model.Type: ApplicationFiled: November 22, 2017Publication date: September 13, 2018Applicant: Massachusetts Institute of TechnologyInventors: Marin Soljacic, Yichen Shen, Li Jing, Tena Dubcek, Scott Skirlo, John E. Peurifoy, Max Erik Tegmark
-
Patent number: 10073191Abstract: A filter to transmit incident radiation at a predetermined incidence angle includes a plurality of photonic crystal structures disposed substantially along a surface normal direction of the filter. The photonic crystal structure includes a multilayer cell that comprises a first layer having a first dielectric permittivity, and a second layer having a second dielectric permittivity different from the first dielectric permittivity. The first layer and the second layer define a Brewster angle substantially equal to the predetermined incidence angle based on the first dielectric permittivity and the second permittivity. Each photonic crystal structure in the plurality of photonic crystal structures defines a respective bandgap, and the respective bandgaps of the plurality of photonic crystal structures, taken together, cover a continuous spectral region of about 50 nm to about 100 mm.Type: GrantFiled: February 24, 2015Date of Patent: September 11, 2018Assignee: Massachusetts Institute of TechnologyInventors: Yichen Shen, Dexin Ye, Ivan Celanovic, Steven G. Johnson, John D. Joannopoulos, Marin Soljacic
-
Patent number: 10004135Abstract: A technique to guide a micro- or nano-scale particle uses the wavelengths of light beams to control the direction of motion of the particle. In this technique, an optical asymmetry is introduced into the particle to form a composite particle. The composite particle includes two faces that preferentially absorb light of different wavelengths, independent of the particle orientation. The difference in absorption spectra of the two faces creates a bidirectional and local thermal gradient that is externally switchable by changing the wavelength of the incident light beams. This thermal gradient induces a thermophoretic drift that moves the composite particle. A two-faced nanoparticle can be guided using the optically induced thermophoretic drift as the propulsion mechanism.Type: GrantFiled: August 24, 2016Date of Patent: June 19, 2018Assignee: Massachusetts Institute of TechnologyInventors: Ognjen Ilic, Ido Kaminer, Marin Soljacic, Yoav Lahini
-
Publication number: 20180159460Abstract: An apparatus for generating electricity via thermophotovoltaic (TPV) energy conversion includes a metallic combustor to convert fuel into heat. The apparatus also includes a metallic photonic crystal to emit electromagnetic radiation within a predetermined wavelength band in response to receiving the heat from the combustor. A brazing layer is disposed between the combustor and the photonic crystal to couple the combustor with the photonic crystal. The apparatus also includes a photovoltaic cell, in electromagnetic communication with the photonic crystal, to convert the electromagnetic radiation emitted by the photonic crystal into electricity.Type: ApplicationFiled: December 6, 2017Publication date: June 7, 2018Inventors: Walker Chan, Ivan Celanovic, John D. Joannopoulos, Marin Soljacic, Veronika Stelmakh
-
Publication number: 20180138751Abstract: Described herein are embodiments of a source high-Q resonator, optionally coupled to an energy source, a second high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. A third high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and at least one of the second resonator and third resonator may be coupled to transfer electromagnetic energy from said source resonator to said at least one of the second resonator and third resonator.Type: ApplicationFiled: October 25, 2017Publication date: May 17, 2018Inventors: John D. Joannopoulos, Aristeidis Karalis, Marin Soljacic
-
Patent number: 9929690Abstract: A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.Type: GrantFiled: October 31, 2014Date of Patent: March 27, 2018Assignee: Massachusetts Institute of TechnologyInventors: Andrej Lenert, David Bierman, Walker Chan, Ivan Celanovic, Marin Soljacic, Evelyn N. Wang, Young Suk Nam, Kenneth McEnaney, Daniel Kraemer, Gang Chen
-
Patent number: 9927616Abstract: Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light.Type: GrantFiled: August 16, 2016Date of Patent: March 27, 2018Assignee: Massachusetts Institute of TechnologyInventors: Chia Wei Hsu, Wenjun Qiu, Bo Zhen, Ofer Shapira, Marin Soljacic
-
Publication number: 20170371227Abstract: An integrated optical beam steering device includes a planar dielectric lens that collimates beams from different inputs in different directions within the lens plane. It also includes an output coupler, such as a grating or photonic crystal, that guides the collimated beams in different directions out of the lens plane. A switch matrix controls which input port is illuminated and hence the in-plane propagation direction of the collimated beam. And a tunable light source changes the wavelength to control the angle at which the collimated beam leaves the plane of the substrate. The device is very efficient, in part because the input port (and thus in-plane propagation direction) can be changed by actuating only log2 N of the N switches in the switch matrix. It can also be much simpler, smaller, and cheaper because it needs fewer control lines than a conventional optical phased array with the same resolution.Type: ApplicationFiled: June 22, 2017Publication date: December 28, 2017Inventors: Scott SKIRLO, Cheryl Marie Sorace-Agaskar, Marin Soljacic, Simon Verghese, Jeffrey S. Herd, Paul William Juodawlkis, Yi Yang, Dirk Robert Englund, Mihika Prabhu
-
Publication number: 20170351293Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.Type: ApplicationFiled: June 2, 2017Publication date: December 7, 2017Inventors: Jacques Johannes Carolan, Mihika PRABHU, Scott SKIRLO, Yichen SHEN, Marin SOLJACIC, Nicholas Christopher HARRIS, Dirk Robert ENGLUND
-
Patent number: 9831682Abstract: Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is ?1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is ?B2, and during the wireless energy transfers, adjusting at least one of the coupling rates ?1B and ?B2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure.Type: GrantFiled: August 13, 2014Date of Patent: November 28, 2017Assignee: Massachusetts Institute of TechnologyInventors: Rafif E. Hamam, Aristeidis Karalis, John D. Joannopoulos, Marin Soljacic
-
Patent number: 9831722Abstract: Described herein are embodiments of a source high-Q resonator, optionally coupled to an energy source, a second high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. A third high-Q resonator, optionally coupled to an energy drain that may be located a distance from the source resonator. The source resonator and at least one of the second resonator and third resonator may be coupled to transfer electromagnetic energy from said source resonator to said at least one of the second resonator and third resonator.Type: GrantFiled: March 29, 2016Date of Patent: November 28, 2017Assignee: Massachusetts Institute of TechnologyInventors: John D. Joannopoulos, Aristeidis Karalis, Marin Soljacic
-
Publication number: 20170299149Abstract: A transparent display includes nanoparticles having wavelength-selective scattering (e.g., resonant scattering) to preferentially scatter light at one or more discrete wavelengths so as to create images. The nanoparticles transmit light at other wavelengths to maintain a high transparency of the display. The nanoparticles are disposed in proximity to a thin film, which can enhance the scattering the process by reflecting light back to the nanoparticles for re-scattering or increasing the quality factor of the resonant scattering.Type: ApplicationFiled: March 31, 2017Publication date: October 19, 2017Inventors: Marin SOLJACIC, Bo Zhen, Emma Anquillare, Yi Yang, Chia-Wei Hsu, John D. Joannopoulos
-
Patent number: 9742204Abstract: Described herein are improved configurations for a wireless power transfer for electronic devices that include at least one source magnetic resonator including a capacitively-loaded conducting loop coupled to a power source and configured to generate an oscillating magnetic field and at least one device magnetic resonator, distal from said source resonators, comprising a capacitively-loaded conducting loop configured to convert said oscillating magnetic fields into electrical energy, wherein at least one said resonator has a keep-out zone around the resonator that surrounds the resonator with a layer of non-lossy material.Type: GrantFiled: April 13, 2016Date of Patent: August 22, 2017Assignee: WiTricity CorporationInventors: Andre B. Kurs, Katherine L. Hall, Morris P. Kesler, Marin Soljacic, Eric R. Giler
-
Patent number: RE47157Abstract: The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence.Type: GrantFiled: June 12, 2017Date of Patent: December 11, 2018Assignee: Massachusetts Institute of TechnologyInventors: Rafif E. Hamam, Peter Bermel, Ivan Celanovic, Marin Soljacic, Adrian Y. X. Yeng, Michael Ghebrebrhan, John D. Joannopoulos