Patents by Inventor Marina Bendersky

Marina Bendersky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11699508
    Abstract: Systems and methods for developing a classification model for classifying medical reports, such as radiology reports. One method includes selecting, from a corpus of reports, a training set and a testing set, assigning labels of a modality and an anatomical focus to the reports in both sets, and extracting a sparse representation matrix for each set based on features in the training set. The method also includes learning, with one or more electronic processors, a correlation between the features of the training set and the corresponding labels using a machine learning classifier, thereby building a classification model and testing the classification model on the reports in the testing set for accuracy using the sparse representation matrix of the testing set. The method further includes predicting, with the classification model, labels of an anatomical focus and a modality for remaining reports in the corpus not included in the sets.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 11, 2023
    Assignee: MERATIVE US L.P.
    Inventors: Marina Bendersky, Tanveer Fathima Syeda-Mahmood, Joy Tzung-yu Wu
  • Patent number: 11694297
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 4, 2023
    Assignee: Guerbet
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Publication number: 20210327019
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Application
    Filed: June 28, 2021
    Publication date: October 21, 2021
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Patent number: 11094034
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: August 17, 2021
    Assignee: International Business Machines Corporation
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Publication number: 20210166822
    Abstract: Systems and methods for developing a classification model for classifying medical reports, such as radiology reports. One method includes selecting, from a corpus of reports, a training set and a testing set, assigning labels of a modality and an anatomical focus to the reports in both sets, and extracting a sparse representation matrix for each set based on features in the training set. The method also includes learning, with one or more electronic processors, a correlation between the features of the training set and the corresponding labels using a machine learning classifier, thereby building a classification model and testing the classification model on the reports in the testing set for accuracy using the sparse representation matrix of the testing set. The method further includes predicting, with the classification model, labels of an anatomical focus and a modality for remaining reports in the corpus not included in the sets.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Marina Bendersky, Tanveer Fathima Syeda-Mahmood, Joy Tzung-yu Wu
  • Publication number: 20200311861
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Application
    Filed: June 17, 2020
    Publication date: October 1, 2020
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Patent number: 10740866
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Publication number: 20200111546
    Abstract: A medical episode analysis mechanism is provided. The mechanism analyzes patient information to extract a plurality of medical concept instances corresponding to medical characteristics associated with a patient. The mechanism generates a multi-dimensional time series data structure representing a clinical history timeline of the medical concept instances. The mechanism analyzes the multi-dimensional time series data structure to identify one or more medical episodes in the clinical history timeline, where a medical episode is a group of related encounters between one or more medical services providers and the patient. The mechanism outputs a visual representation of the identified one or more medical episodes to a computing device, where the visual representation provides a navigation user interface through which a user may browse the clinical history timeline associated with the patient.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Tanveer F. Syeda-Mahmood, Marina Bendersky
  • Publication number: 20190392547
    Abstract: Mechanisms are provided to implement an automated medical image processing pipeline selection (MIPPS) system. The MIPPS system receives medical image data associated with a patient electronic medical record and analyzes the medical image data to extract evidence data comprising characteristics of one or more medical images in the medical image data indicative of a medical image processing pipeline to select for processing the one or more medical images. The evidence data is provided to a machine learning model of the MIPPS system which selects a medical image processing pipeline based on a machine learning based analysis of the evidence data. The selected medical image processing pipeline processes the medical image data to generate a results output.
    Type: Application
    Filed: June 26, 2018
    Publication date: December 26, 2019
    Inventors: Amin Katouzian, Anup Pillai, Chaitanya Shivade, Marina Bendersky, Ashutosh Jadhav, Vandana Mukherjee, Ehsan Dehghan Marvast, Tanveer F. Syeda-Mahmood
  • Publication number: 20190198137
    Abstract: Mechanisms are provided to implement a medical information summarization engine (MISE). The MISE receives input specifying a summarization template, wherein the summarization template specifies terms or concepts of interest to a medical professional when making a medical decision regarding a patient. The MISE maps the terms or concepts of interest to medical concepts in a medical knowledge base. The MISE processes electronic medical records (EMR) of the patient based on the mapping of the medical concepts in the medical knowledge base to the terms or concepts of interest in the summarization template to extract patient information from the patient EMR that matches at least one of the medical concepts from the mapping. The MIE generates and outputs a holistic summary of the patient's EMRs that summarizes the most salient portions of the patient EMR for use by the medical professional in making the medical decision regarding the patient.
    Type: Application
    Filed: December 26, 2017
    Publication date: June 27, 2019
    Inventors: Tyler Baldwin, Marina Bendersky, Ashutosh Jadhav, Karina Kanjaria, Chaitanya Shivade, Tanveer F. Syeda-Mahmood, Joy Wu