Patents by Inventor Marina Brockway

Marina Brockway has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7922669
    Abstract: A system comprising an implantable medical device (IMD) includes an implantable heart sound sensor to produce an electrical signal representative of at least one heart sound. The heart sound is associated with mechanical activity of a patient's heart. Additionally, the IMD includes a heart sound sensor interface circuit coupled to the heart sound sensor to produce a heart sound signal, and a signal analyzer circuit coupled to the heart sound sensor interface circuit. The signal analyzer circuit measures a baseline heart sound signal, and deems that an ischemic event has occurred using, among other things, a measured subsequent change in the heart sound signal from the established baseline heart sound signal.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: April 12, 2011
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Richard Fogoros, Carlos Haro, Yousufali Dalal, Marina Brockway, Krzysztof Z. Siejko
  • Publication number: 20100298732
    Abstract: Systems and methods involve use of a medical device comprising sensing circuitry. One or more respiratory parameters are detected using the device. Patient baseline weight is provided, and an output signal indicative of a patient's congestive heart failure status is generated based on a change in the one or more respiratory parameters and a change in the patient's measured weight or predicted weight relative to the patient baseline weight. The respiratory parameters may include one or more of respiration rate, relative tidal volume, an index indicative of rapid shallow breathing by the patient, an index derived by computing a respiration rate and a tidal volume for each patient breath, and an index indicative of dyspnea, for example.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Yi Zhang, John D. Hatlestad, Yousufali H. Dalal, Marina Brockway
  • Publication number: 20100298729
    Abstract: Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed to detect, monitor, track and/or trend ischemia using cardiac activation sequence information. Ischemia detection may involve sensing composite cardiac signals using implantable electrodes, and performing a signal separation that produces one or more cardiac activation signal vectors associated with one or more cardiac activation sequences. A change in the signal vector may be detected using subsequent separations. The change may be an elevation or depression of the ST segment of a cardiac cycle or other change indicative of myocardial ischemia, myocardial infarction, or other pathological change. The change may be used to predict, quantify, and/or qualify an event such as an arrhythmia, a myocardial infarction, or other pathologic change. Information associated with the vectors may be stored and used to track the vectors.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Yi Zhang, Scott A. Meyer, Jeffrey E. Stahmann, Carlos Alberto Ricci, Marina Brockway, Aaron R. McCabe, Yinghong Yu, Donald L. Hopper
  • Publication number: 20100298733
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Application
    Filed: July 30, 2010
    Publication date: November 25, 2010
    Inventors: Jonathan Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey Stahmann, Yi Zhang, Jesse Hartley
  • Patent number: 7797036
    Abstract: Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed to detect, monitor, track and/or trend ischemia using cardiac activation sequence information. Ischemia detection may involve sensing composite cardiac signals using implantable electrodes, and performing a signal separation that produces one or more cardiac activation signal vectors associated with one or more cardiac activation sequences. A change in the signal vector may be detected using subsequent separations. The change may be an elevation or depression of the ST segment of a cardiac cycle or other change indicative of myocardial ischemia, myocardial infarction, or other pathological change. The change may be used to predict, quantify, and/or qualify an event such as an arrhythmia, a myocardial infarction, or other pathologic change. Information associated with the vectors may be stored and used to track the vectors.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 14, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Scott A. Meyer, Jeffrey E. Stahmann, Carlos Alberto Ricci, Marina Brockway, Aaron R. McCabe, Yinghong Yu, Donald I. Hopper
  • Patent number: 7775983
    Abstract: Systems and methods involve use of a medical device comprising sensing circuitry. One or more respiratory parameters are detected using the device. Patient baseline weight is provided, and an output signal indicative of a patient's congestive heart failure status is generated based on a change in the one or more respiratory parameters and a change in the patient's measured weight or predicted weight relative to the patient baseline weight. The respiratory parameters may include one or more of respiration rate, relative tidal volume, an index indicative of rapid shallow breathing by the patient, an index derived by computing a respiration rate and a tidal volume for each patient breath, and an index indicative of dyspnea, for example.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 17, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, John D. Hatlestad, Yousufali H. Dalal, Marina Brockway
  • Publication number: 20100198283
    Abstract: Cardiac monitoring and/or stimulation methods and systems provide monitoring, defibrillation and/or pacing therapies. A signal processor receives a plurality of composite signals associated with a plurality of sources, separates a signal using a source separation algorithm, and identifies a cardiac signal using a selected vector. The signal processor may iteratively separate signals from the plurality of composite signals until the cardiac signal is identified. The selected vector may be updated if desired or necessary. A method of signal separation involves detecting a plurality of composite signals at a plurality of locations, separating a signal using source separation, and selecting a vector that provides a cardiac signal. The separation may include a principal component analysis and/or an independent component analysis.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 5, 2010
    Inventors: Yi Zhang, Marina Brockway, Carlos Alberto Ricci, Ron Heil, Douglas R. Daum, Robert J. Sweeney, Aaron McCabe
  • Patent number: 7766840
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: August 3, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey Stahmann, Yi Zhang, Jesse Hartley
  • Patent number: 7761158
    Abstract: Systems, devices and methods provide for evaluation of heart failure symptoms. Sensor data associated with one or more symptoms of heart failure are acquired and trended. Statistical features, such as slope, are extracted from the data trend in a moving window and are used to develop a cumulative sum. The cumulative sum is compared to a threshold value or V-mask to detect a shift in cumulative sum indicating changes in heart failure symptoms. A shift beyond the threshold value may trigger an alert or implementation of therapy.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: July 20, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina Brockway, John Troiani
  • Publication number: 20100145403
    Abstract: An implantable device and method for monitoring S1 heart sounds with a remotely located accelerometer. The device includes a transducer that converts heart sounds into an electrical signal. A control circuit is coupled to the transducer. The control circuit is configured to receive the electrical signal, identify an S1 heart sound, and to convert the S1 heart sound into electrical information. The control circuit also generates morphological data from the electrical information. The morphological data relates to a hemodynamic metric, such as left ventricular contractility. A housing may enclose the control circuit. The housing defines a volume coextensive with an outer surface of the housing. The transducer is in or on the volume defined by the housing.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 10, 2010
    Inventors: Gerrard M. Carlson, Krzysztof Z. Siejko, Ramesh Wariar, Marina Brockway
  • Publication number: 20100121391
    Abstract: An implantable cardiac rhythm management (CRM) device delivers a chronic therapy while detecting an ischemic state. When the ischemic state indicates the occurrence of an ischemic event, the implantable CRM device delivers a post-ischemia therapy. The post-ischemia therapy and the chronic therapy are adjusted using feedback control with the ischemic state and parameters indicative of the effectiveness of the post-ischemic therapy and the effectiveness of the chronic therapy as inputs.
    Type: Application
    Filed: January 18, 2010
    Publication date: May 13, 2010
    Inventors: Marina Brockway, Joseph M. Pastore, Yi Zhang, Carlos Ricci, Allan Shuros, Rodney W. Salo
  • Patent number: 7706866
    Abstract: Cardiac monitoring and/or stimulation methods and systems provide monitoring, defibrillation and/or pacing therapies. A signal processor receives a plurality of composite signals associated with a plurality of sources, separates a signal using a source separation algorithm, and identifies a cardiac signal using a selected vector. The signal processor may iteratively separate signals from the plurality of composite signals until the cardiac signal is identified. The selected vector may be updated if desired or necessary. A method of signal separation involves detecting a plurality of composite signals at a plurality of locations, separating a signal using source separation, and selecting a vector that provides a cardiac signal. The separation may include a principal component analysis and/or an independent component analysis.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: April 27, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Marina Brockway, Carlos Alberto Ricci, Ron Heil, Douglas R. Daum, Robert J. Sweeney, Aaron McCabe
  • Patent number: 7670298
    Abstract: An implantable device and method for monitoring S1 heart sounds with a remotely located accelerometer. The device includes a transducer that converts heart sounds into an electrical signal. A control circuit is coupled to the transducer. The control circuit is configured to receive the electrical signal, identify an S1 heart sound, and to convert the S1 heart sound into electrical information. The control circuit also generates morphological data from the electrical information. The morphological data relates to a hemodynamic metric, such as left ventricular contractility. A housing may enclose the control circuit. The housing defines a volume coextensive with an outer surface of the housing. The transducer is in or on the volume defined by the housing.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: March 2, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gerrard M. Carlson, Krzysztof Z. Siejko, Ramesh Wariar, Marina Brockway
  • Patent number: 7668594
    Abstract: An implantable cardiac rhythm management (CRM) device delivers a chronic therapy while detecting an ischemic state. When the ischemic state indicates the occurrence of an ischemic event, the implantable CRM device delivers a post-ischemia therapy. The post-ischemia therapy and the chronic therapy are adjusted using feedback control with the ischemic state and parameters indicative of the effectiveness of the post-ischemic therapy and the effectiveness of the chronic therapy as inputs.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: February 23, 2010
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Marina Brockway, Joseph M. Pastore, Yi Zhang, Carlos Ricci, Allan Shuros, Rodney W. Salo
  • Publication number: 20090287106
    Abstract: A system comprising an implantable medical device (IMD) includes an implantable heart sound sensor to produce an electrical signal representative of at least one heart sound. The heart sound is associated with mechanical activity of a patient's heart. Additionally, the IMD includes a heart sound sensor interface circuit coupled to the heart sound sensor to produce a heart sound signal, and a signal analyzer circuit coupled to the heart sound sensor interface circuit. The signal analyzer circuit measures a baseline heart sound signal, and deems that an ischemic event has occurred using, among other things, a measured subsequent change in the heart sound signal from the established baseline heart sound signal.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Inventors: Yi Zhang, Richard Fogoros, Carlos Haro, Yousufali Dalal, Marina Brockway, Krzysztof Z. Siejko
  • Publication number: 20090270750
    Abstract: Cardiac methods and devices that separate signals using at least two composite signals acquired at least at two input impedances. A target source impedance may be selected, and a cardiac signal may be separated from composite signals using the selected target source impedance. Medical systems include a cardiac device having a housing that provides amplification circuitry configured to have a first amplifier input impedance and a second amplifier input impedance, such as using two separate circuits or switching between two input impedances. One or more electrode assemblies are coupled to the amplification circuitry. A signal processor is provided in the housing configured to separate a source signal using a first composite signal detected at the first input impedance and a second composite signal detected at the second input impedance. The phase response of the first input amplifier circuit is about equal to that of the second input amplifier circuit.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventors: Apurv Kamath, Darrel Orvin Wagner, Paul Haefner, Marina Brockway
  • Patent number: 7555335
    Abstract: Cardiac methods and devices that separate signals using at least two composite signals acquired at least at two input impedances. A target source impedance may be selected, and a cardiac signal may be separated from composite signals using the selected target source impedance. Medical systems include a cardiac device having a housing that provides amplification circuitry configured to have a first amplifier input impedance and a second amplifier input impedance, such as using two separate circuits or switching between two input impedances. One or more electrode assemblies are coupled to the amplification circuitry. A signal processor is provided in the housing configured to separate a source signal using a first composite signal detected at the first input impedance and a second composite signal detected at the second input impedance. The phase response of the first input amplifier circuit is about equal to that of the second input amplifier circuit.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: June 30, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Apurv Kamath, Darrell Orvin Wagner, Paul Haefner, Marina Brockway
  • Publication number: 20090132000
    Abstract: A system receives signals indicative of cardiopulmonary conditions sensed by a plurality of sensors and provides for monitoring and automated differential diagnosis of the cardiopulmonary conditions based on the signals. Cardiogenic pulmonary edema is detected based on one or more signals sensed by implantable sensors. If the cardiogenic pulmonary edema is not detected, obstructive pulmonary disease and restrictive pulmonary disease are each detected based on a forced vital capacity (FVC) parameter and a forced expiratory volume (FEV) parameter measured from a respiratory signal sensed by an implantable or non-implantable sensor. In one embodiment, an implantable medical device senses signals indicative of the cardiopulmonary conditions, and an external system detects the cardiopulmonary conditions based on these signals by executing an automatic detection algorithm.
    Type: Application
    Filed: January 8, 2009
    Publication date: May 21, 2009
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Marina Brockway, Donald Hopper, Gerrard M. Carlson, Veerichetty Kadhiresan, Kenneth Beck
  • Patent number: 7499750
    Abstract: Implementing a subcutaneous medical electrode system involves positioning a number of electrode subsystems in relation to a heart so that noise cancellation provides an improved signal to noise ratio of the cardiac signal and/or to provide one electrode arrangement preferential for cardiac signals and another arrangement preferential for noise signals. One of the electrode subsystems so positioned may include one or more can electrodes located on a housing enclosing a medical device. The medical device may be configured to provide therapeutic, diagnostic, or monitoring functions, including, for example, cardiac arrhythmia therapy.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 3, 2009
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul Haefner, Darrell Orvin Wagner, Jason Alan Shiroff, Marina Brockway, Apurv Kamath
  • Publication number: 20090036757
    Abstract: A plurality of chronic sensors are used to facilitate diagnosis and medical decision making for an individual patient. An expert system evaluates the sensor data, combines the sensor data with stored probability data and provides an output signal for notification or medical intervention.
    Type: Application
    Filed: October 3, 2008
    Publication date: February 5, 2009
    Inventors: Marina Brockway, Gerrard M. Carlson, Veerichetty Kadhiresan, Veadimir Kovtun