Patents by Inventor Marina Kravchik

Marina Kravchik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120300363
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Patent number: 8238076
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: August 7, 2012
    Assignee: Vishay Sprague, Inc.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Patent number: 7907090
    Abstract: A dielectric ceramic composition has a dielectric constant, K, of at least 200 and a dielectric loss, DF, of 0.0006 or less at 1 MHz. The dielectric ceramic composition may be formed by sintering by firing in air without a controlled atmosphere. The dielectric ceramic composition may have a major component of 92.49 to 97.5 wt. % containing 60.15 to 68.2 wt. % strontium titanate, 11.02 to 23.59 wt. % calcium titanate and 7.11 to 21.32 wt. % barium titanate; and a minor component of 2.50 to 7.51 wt. % containing 1.18 to 3.55 wt. % calcium zirconate, 0.50 to 1.54 wt. % bismuth trioxide, 0.2 to 0.59 wt. % zirconia, 0.02 to 0.07 wt. % manganese dioxide, 0.12 to 0.35 wt. % zinc oxide, 0.12 to 0.35 wt. % lead-free glass frit, 0.24 to 0.71 wt. % kaolin clay and 0.12 to 0.35 wt. % cerium oxide. UHF antennas and monolithic ceramic components may use the dielectric ceramic composition.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: March 15, 2011
    Assignee: Vishay Intertechnology, Inc.
    Inventors: Eli Bershadsky, Marina Kravchik, Reuven Katraro, David Ben-Bassat, Dani Alon
  • Publication number: 20100073846
    Abstract: A bulk capacitor includes a first electrode formed of a metal foil and a semi-conductive porous ceramic body formed on the metal foil. A dielectric layer is formed on the porous ceramic body for example by oxidation. A conductive medium is deposited on the porous ceramic body filling the pores of the porous ceramic body and forming a second electrode. The capacitor can then be encapsulated with various layers and can include conventional electrical terminations. A method of manufacturing a bulk capacitor includes forming a conductive porous ceramic body on a first electrode formed of a metal foil, oxidizing to form a dielectric layer and filling the porous body with a conductive medium to form a second electrode. A thin semi-conductive ceramic layer can also be disposed between the metal foil and the porous ceramic body.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 25, 2010
    Applicant: VISHAY SPRAGUE, INC.
    Inventors: Reuven Katraro, Nissim Cohen, Marina Kravchik-Volfson, Eli Bershadsky, John Bultitude
  • Publication number: 20080303720
    Abstract: A dielectric ceramic composition has a dielectric constant, K, of at least 200 and a dielectric loss, DF, of 0.0006 or less at 1 MHz. The dielectric ceramic composition may be formed by sintering by firing in air without a controlled atmosphere. The dielectric ceramic composition may have a major component of 92.49 to 97.5 wt. % containing 60.15 to 68.2 wt. % strontium titanate, 11.02 to 23.59 wt. % calcium titanate and 7.11 to 21.32 wt. % barium titanate; and a minor component of 2.50 to 7.51 wt. % containing 1.18 to 3.55 wt. % calcium zirconate, 0.50 to 1.54 wt. % bismuth trioxide, 0.2 to 0.59 wt. % zirconia, 0.02 to 0.07 wt. % manganese dioxide, 0.12 to 0.35 wt. % zinc oxide, 0.12 to 0.35 wt. % lead-free glass frit, 0.24 to 0.71 wt. % kaolin clay and 0.12 to 0.35 wt. % cerium oxide. UHF antennas and monolithic ceramic components may use the dielectric ceramic composition.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 11, 2008
    Applicant: VISHAY INTERTECHNOLOGY, INC.
    Inventors: ELI BERSHADSKY, MARINA KRAVCHIK, REUVEN KATRARO, DAVID BEN-BASSAT, DANI ALON