Patents by Inventor Marina Timmermans

Marina Timmermans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11599019
    Abstract: According to an aspect of the present disclosure there is provided a method for forming an EUVL pellicle, the method comprising: coating a carbon nanotube, CNT, membrane, and mounting the CNT membrane to a pellicle frame, wherein coating the CNT membrane comprises: pre-coating CNTs of the membrane with a seed material, and forming an outer coating on the pre-coated CNTs, the outer coating covering the pre-coated CNTs, the forming of the outer coating comprising depositing a coating material on the pre-coated CNTs by atomic layer deposition.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: March 7, 2023
    Assignee: IMEC VZW
    Inventors: Marina Timmermans, Cedric Huyghebaert, Ivan Pollentier, Elie Schapmans, Emily Gallagher
  • Patent number: 11181818
    Abstract: The present disclosure relates to a lithography scanner including: a light source configured to emit extreme ultra-violet (EUV) light; a pellicle including an EUV transmissive membrane that is configured to scatter the EUV light into an elliptical scattering pattern having a first major axis; a reticle configured to reflect the scattered EUV light through the pellicle; and an imaging system configured to project a portion of the reflected light that enters an acceptance cone of the imaging system onto a target wafer, wherein a cross section of the acceptance cone has a second major axis, and wherein the pellicle is arranged such that the first major axis is oriented at an angle relative to the second major axis.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 23, 2021
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Emily Gallagher, Joern-Holger Franke, Ivan Pollentier, Marina Timmermans, Marina Mariano Juste
  • Patent number: 11163229
    Abstract: A method for protecting a photomask comprises: (i) providing the photomask, (ii) providing a border, (iii) depositing at least two electrical contacts on the border, (iv) mounting a film comprising carbon nanotubes on the border such that the film comprises a free-standing part, wherein after the mounting and depositing steps, the electrical contacts are in contact with the film, (v) inducing a current through the free-standing part of the film by biasing at least one pair of the electrical contacts, and (vi) mounting the border on at least one side of the photomask with the free-standing part of the film above the photomask.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: November 2, 2021
    Assignees: IMEC VZW, KATHOLIEKE UNIVERSITEIT LEUVEN, KU LEUVEN R&D
    Inventors: Marina Mariano Juste, Marina Timmermans, Ivan Pollentier, Cedric Huyghebaert, Emily Gallagher
  • Patent number: 11092886
    Abstract: The present disclosure relates to a method for forming a pellicle for extreme ultraviolet lithography, the method comprising: forming a coating of a first material on a peripheral region of a main surface of a carbon nanotube pellicle membrane, the membrane including a carbon nanotube film, arranging the carbon nanotube pellicle membrane on a pellicle frame with the peripheral region facing a support surface of the pellicle frame, wherein the support surface of the pellicle frame is formed by a second material, and bonding together the coating of the carbon nanotube pellicle membrane and the pellicle support surface by pressing the carbon nanotube pellicle membrane and the pellicle support surface against each other. The present disclosure relates also relates to a method for forming a reticle system for extreme ultraviolet lithography.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: August 17, 2021
    Assignees: IMEC VZW, Imec USA Nanoelectronics Design Center
    Inventors: Marina Timmermans, Emily Gallagher, Ivan Pollentier, Hanns Christoph Adelmann, Cedric Huyghebaert, Jae Uk Lee
  • Publication number: 20210191255
    Abstract: According to an aspect of the present disclosure there is provided a method for forming an EUVL pellicle, the method comprising: coating a carbon nanotube, CNT, membrane, and mounting the CNT membrane to a pellicle frame, wherein coating the CNT membrane comprises: pre-coating CNTs of the membrane with a seed material, and forming an outer coating on the pre-coated CNTs, the outer coating covering the pre-coated CNTs, the forming of the outer coating comprising depositing a coating material on the pre-coated CNTs by atomic layer deposition.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 24, 2021
    Inventors: Marina Timmermans, Cedric Huyghebaert, Ivan Pollentier, Elie Schapmans, Emily Gallagher
  • Patent number: 10712659
    Abstract: The present disclosure relates to a method for forming a carbon nanotube pellicle membrane for an extreme ultraviolet lithography reticle, the method comprising: bonding together overlapping carbon nanotubes of at least one carbon nanotube film by pressing the at least one carbon nanotube film between a first pressing surface and a second pressing surface, thereby forming a free-standing carbon nanotube pellicle membrane. The present disclosure also relates to a method for forming a pellicle for extreme ultraviolet lithography and for forming a reticle system for extreme ultraviolet lithography respectively.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: July 14, 2020
    Assignees: IMEC VZW, Imec USA Nanoelectronics Design Center
    Inventors: Emily Gallagher, Cedric Huyghebaert, Ivan Pollentier, Hanns Christoph Adelmann, Marina Timmermans, Jae Uk Lee
  • Publication number: 20200209737
    Abstract: The present disclosure relates to a lithography scanner including: a light source configured to emit extreme ultra-violet (EUV) light; a pellicle including an EUV transmissive membrane that is configured to scatter the EUV light into an elliptical scattering pattern having a first major axis; a reticle configured to reflect the scattered EUV light through the pellicle; and an imaging system configured to project a portion of the reflected light that enters an acceptance cone of the imaging system onto a target wafer, wherein a cross section of the acceptance cone has a second major axis, and wherein the pellicle is arranged such that the first major axis is oriented at an angle relative to the second major axis.
    Type: Application
    Filed: July 31, 2019
    Publication date: July 2, 2020
    Inventors: Emily Gallagher, Joern-Holger Franke, Ivan Pollentier, Marina Timmermans, Marina Mariano Juste
  • Publication number: 20200201169
    Abstract: A method for protecting a photomask comprises: (i) providing the photomask, (ii) providing a border, (iii) depositing at least two electrical contacts on the border, (iv) mounting a film comprising carbon nanotubes on the border such that the film comprises a free-standing part, wherein after the mounting and depositing steps, the electrical contacts are in contact with the film, (v) inducing a current through the free-standing part of the film by biasing at least one pair of the electrical contacts, and (vi) mounting the border on at least one side of the photomask with the free-standing part of the film above the photomask.
    Type: Application
    Filed: November 5, 2019
    Publication date: June 25, 2020
    Inventors: Marina Mariano Juste, Marina Timmermans, Ivan Pollentier, Cedric Huyghebaert, Emily Gallagher
  • Publication number: 20180329291
    Abstract: The present disclosure relates to a method for forming a pellicle for extreme ultraviolet lithography, the method comprising: forming a coating of a first material on a peripheral region of a main surface of a carbon nanotube pellicle membrane, the membrane including a carbon nanotube film, arranging the carbon nanotube pellicle membrane on a pellicle frame with the peripheral region facing a support surface of the pellicle frame, wherein the support surface of the pellicle frame is formed by a second material, and bonding together the coating of the carbon nanotube pellicle membrane and the pellicle support surface by pressing the carbon nanotube pellicle membrane and the pellicle support surface against each other. The present disclosure relates also relates to a method for forming a reticle system for extreme ultraviolet lithography.
    Type: Application
    Filed: May 15, 2018
    Publication date: November 15, 2018
    Applicants: IMEC VZW, Imec USA Nanoelectronics Design Center
    Inventors: Marina Timmermans, Emily Gallagher, Ivan Pollentier, Hanns Christoph Adelmann, Cedric Huyghebaert, Jae Uk Lee
  • Publication number: 20180329289
    Abstract: The present disclosure relates to a method for forming a carbon nanotube pellicle membrane for an extreme ultraviolet lithography reticle, the method comprising: bonding together overlapping carbon nanotubes of at least one carbon nanotube film by pressing the at least one carbon nanotube film between a first pressing surface and a second pressing surface, thereby forming a free-standing carbon nanotube pellicle membrane. The present disclosure also relates to a method for forming a pellicle for extreme ultraviolet lithography and for forming a reticle system for extreme ultraviolet lithography respectively.
    Type: Application
    Filed: May 15, 2018
    Publication date: November 15, 2018
    Applicants: IMEC VZW, Imec USA Nanoelectronics Design Center
    Inventors: Emily Gallagher, Cedric Huyghebaert, Ivan Pollentier, Hanns Christoph Adelmann, Marina Timmermans, Jae Uk Lee