Patents by Inventor Mario E. Munich

Mario E. Munich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9286810
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. Certain embodiments contemplate improvements to the front-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate a novel landmark matching process. Certain of these embodiments also contemplate a novel landmark creation process. Certain embodiments contemplate improvements to the back-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate algorithms for modifying the SLAM graph in real-time to achieve a more efficient structure.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 15, 2016
    Assignee: iRobot Corporation
    Inventors: Ethan Eade, Mario E. Munich, Philip Fong
  • Publication number: 20160069691
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Patent number: 9250081
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 2, 2016
    Assignee: iRobot Corporation
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Patent number: 9223312
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 29, 2015
    Assignee: iRobot Corporation
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Patent number: 9218003
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: December 22, 2015
    Assignee: iRobot Corporation
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Publication number: 20150261223
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Application
    Filed: June 17, 2014
    Publication date: September 17, 2015
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Patent number: 8862271
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: October 14, 2014
    Assignee: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Frederick D. Hook, Mario E. Munich, Dhiraj Goel
  • Publication number: 20140257622
    Abstract: A proximity sensor includes first and second sensors disposed on a sensor body adjacent to one another. The first sensor is one of an emitter and a receiver. The second sensor is the other one of an emitter and a receiver. A third sensor is disposed adjacent the second sensor opposite the first sensor. The third sensor is an emitter if the first sensor is an emitter or a receiver if the first sensor is a receiver. Each sensor is positioned at an angle with respect to the other two sensors. Each sensor has a respective field of view. A first field of view intersects a second field of view defining a first volume that detects a floor surface within a first threshold distance. The second field of view intersects a third field of view defining a second volume that detects a floor surface within a second threshold distance.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 11, 2014
    Applicant: iRobot Corporation
    Inventors: Steven V. Shamlian, Samuel Duffley, Nikolai Romanov, Dhiraj Goel, Frederic D. Hook, Mario E. Munich
  • Patent number: 8798840
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: August 5, 2014
    Assignee: Irobot Corporation
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Publication number: 20140100693
    Abstract: A mobile robot system is provided that includes a docking station having at least two pose-defining fiducial markers. The pose-defining fiducial markers have a predetermined spatial relationship with respect to one another and/or to a reference point on the docking station such that a docking path to the base station can be determined from one or more observations of the at least two pose-defining fiducial markers. A mobile robot in the system includes a pose sensor assembly. A controller is located on the chassis and is configured to analyze an output signal from the pose sensor assembly. The controller is configured to determine a docking station pose, to locate the docking station pose on a map of a surface traversed by the mobile robot and to path plan a docking trajectory.
    Type: Application
    Filed: October 5, 2013
    Publication date: April 10, 2014
    Applicant: iRobot Corporation
    Inventors: Philip Fong, Jason Meltzer, Steffen Gutmann, Vazgen Karapetyan, Mario E. Munich
  • Publication number: 20140031980
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: January 30, 2014
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Publication number: 20140005933
    Abstract: A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 2, 2014
    Inventors: Philip Fong, Ethan Eade, Mario E. Munich
  • Publication number: 20130331988
    Abstract: Apparatus and methods for carpet drift estimation are disclosed. In certain implementations, a robotic device includes an actuator system to move the body across a surface. A first set of sensors can sense an actuation characteristic of the actuator system. For example, the first set of sensors can include odometry sensors for sensing wheel rotations of the actuator system. A second set of sensors can sense a motion characteristic of the body. The first set of sensors may be a different type of sensor than the second set of sensors. A controller can estimate carpet drift based at least on the actuation characteristic sensed by the first set of sensors and the motion characteristic sensed by the second set of sensors.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventors: Dhiraj Goel, Ethan Eade, Philip Fong, Mario E. Munich
  • Publication number: 20130138246
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 30, 2013
    Inventors: Jens-Steffen Gutmann, Dhiraj Goel, Mario E. Munich
  • Publication number: 20130138247
    Abstract: Vector Field SLAM is a method for localizing a mobile robot in an unknown environment from continuous signals such as WiFi or active beacons. Disclosed is a technique for localizing a robot in relatively large and/or disparate areas. This is achieved by using and managing more signal sources for covering the larger area. One feature analyzes the complexity of Vector Field SLAM with respect to area size and number of signals and then describe an approximation that decouples the localization map in order to keep memory and run-time requirements low. A tracking method for re-localizing the robot in the areas already mapped is also disclosed. This allows to resume the robot after is has been paused or kidnapped, such as picked up and moved by a user. Embodiments of the invention can comprise commercial low-cost products including robots for the autonomous cleaning of floors.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 30, 2013
    Inventors: Jens-Steffen Gutmann, Philip Fong, Mario E. Munich
  • Publication number: 20120121161
    Abstract: The invention is related to methods and apparatus that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. Certain embodiments contemplate improvements to the front-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate a novel landmark matching process. Certain of these embodiments also contemplate a novel landmark creation process. Certain embodiments contemplate improvements to the back-end processing in a SLAM-based system. Particularly, certain of these embodiments contemplate algorithms for modifying the SLAM graph in real-time to achieve a more efficient structure.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 17, 2012
    Applicant: EVOLUTION ROBOTICS, INC.
    Inventors: Ethan Eade, Mario E. Munich, Philip Fong
  • Patent number: 6633671
    Abstract: A system for processing handwriting that uses an ordinary camera as an image input device. The output of a single camera is used to produce a probability function that indicates the likelihood of whether the pen is touching the paper. The function uses clues including ink on the page and/or shadows. Another embodiment uses both pen up and pen down information to dynamically time warp-fit the information to fit it to a template.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: October 14, 2003
    Assignee: California Institute of Technology
    Inventors: Mario E. Munich, Pietro Perona
  • Publication number: 20020028017
    Abstract: A system for processing handwriting that uses an ordinary camera as an image input device. The output of a single camera is used to produce a probability function that indicates the likelihood of whether the pen is touching the paper. The function uses clues including ink on the page and/or shadows. Another embodiment uses both pen up and pen down information to dynamically time warp-fit the information to fit it to a template.
    Type: Application
    Filed: January 28, 1999
    Publication date: March 7, 2002
    Inventors: MARIO E. MUNICH, PIETRO PERONA