Patents by Inventor Mario Giovanni Scurati

Mario Giovanni Scurati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210242323
    Abstract: A vertical conduction electronic power device includes a body delimited by a first and a second surface and having an epitaxial layer of semiconductor material, and a substrate. The epitaxial layer is delimited by the first surface of the body and the substrate is delimited by the second surface of the body. The epitaxial layer houses at least a first and a second conduction region having a first type of doping and a plurality of insulated-gate regions, which extend within the epitaxial layer. The substrate has at least one silicide region, which extends starting from the second surface of the body towards the epitaxial layer.
    Type: Application
    Filed: January 28, 2021
    Publication date: August 5, 2021
    Inventors: Davide Giuseppe PATTI, Mario Giovanni SCURATI, Marco MORELLI
  • Patent number: 10128057
    Abstract: A supercapacitor including: a shell; a chamber in the shell; a first electrode and a second electrode on respective walls of the chamber; and a separator arranged between the first electrode and the second electrode through the chamber. The separator includes a first perforated membrane and a second perforated membrane, which is movable with respect to the first membrane between a first position, in which the first membrane and the second membrane are separate and a second position, in which the first membrane and the second membrane are in contact and coupled for rendering the separator impermeable.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: November 13, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giovanni Scurati, Marco Morelli, Fulvio Vittorio Fontana
  • Patent number: 9892994
    Abstract: An integrated circuit chip attachment in a microstructure device is accomplished through the use of an adhesive-based material in which graphene flakes are incorporated. This results in superior thermal conductivity. The spatial orientation of the graphene flakes is controlled, for example by adhering polar molecules to the graphene flakes and exposing the flakes to an external force field, so that the graphene flakes have desired orientations under the integrated circuit chip, alongside of the integrated circuit chip and above the integrated circuit chip.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: February 13, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giovanni Scurati, Laura Ceriati, Luciano Benini
  • Publication number: 20170125173
    Abstract: A supercapacitor including: a shell; a chamber in the shell; a first electrode and a second electrode on respective walls of the chamber; and a separator arranged between the first electrode and the second electrode through the chamber. The separator includes a first perforated membrane and a second perforated membrane, which is movable with respect to the first membrane between a first position, in which the first membrane and the second membrane are separate and a second position, in which the first membrane and the second membrane are in contact and coupled for rendering the separator impermeable.
    Type: Application
    Filed: May 25, 2016
    Publication date: May 4, 2017
    Inventors: Mario Giovanni Scurati, Marco Morelli, Fulvio Vittorio Fontana
  • Publication number: 20160079144
    Abstract: An integrated circuit chip attachment in a microstructure device is accomplished through the use of an adhesive-based material in which graphene flakes are incorporated. This results in superior thermal conductivity. The spatial orientation of the graphene flakes is controlled, for example by adhering polar molecules to the graphene flakes and exposing the flakes to an external force field, so that the graphene flakes have desired orientations under the integrated circuit chip, alongside of the integrated circuit chip and above the integrated circuit chip.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 17, 2016
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giovanni Scurati, Laura Ceriati, Luciano Benini
  • Publication number: 20140287239
    Abstract: An integrated circuit chip attachment in a microstructure device is accomplished through the use of an adhesive-based material in which graphene flakes are incorporated. This results in superior thermal conductivity. The spatial orientation of the graphene flakes is controlled, for example by adhering polar molecules to the graphene flakes and exposing the flakes to an external force field, so that the graphene flakes have desired orientations under the integrated circuit chip, alongside of the integrated circuit chip and above the integrated circuit chip.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 25, 2014
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Mario Giovanni Scurati, Laura Ceriati, Luciano Benini
  • Patent number: 8097222
    Abstract: A microfluidic device for nucleic acid analysis includes a monolithic semiconductor body (13), a microfluidic circuit (10), at least partially accommodated in the monolithic semiconductor body (13), and a micropump (11). The microfluidic circuit (10) includes a sample preparation channel (18) formed on the monolithic semiconductor body (13) and at least one microfluidic channel (20, 22) buried in the monolithic semiconductor body (13). The micropump (11), includes a plurality of sealed chambers (40) provided with respective openable sealing elements (41) and having a first pressure therein that is different from a second pressure in the microfluidic circuit (10). In addition, the micropump (11) and the microfluidic circuit (10) are configured so that opening the openable sealing elements (41) provides fluidic coupling between the respective chambers (40) and the microfluidic circuit (10). The openable sealing elements (41) are integrated in the monolithic semiconductor body (13).
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: January 17, 2012
    Assignee: STMicroelectronics, S.r.l.
    Inventor: Mario Giovanni Scurati
  • Publication number: 20090214391
    Abstract: A microfluidic device for nucleic acid analysis includes a monolithic semiconductor body (13), a microfluidic circuit (10), at least partially accommodated in the monolithic semiconductor body (13), and a micropump (11). The microfluidic circuit (10) includes a sample preparation channel (18) formed on the monolithic semiconductor body (13) and at least one microfluidic channel (20, 22) buried in the monolithic semiconductor body (13). The micropump (11), includes a plurality of sealed chambers (40) provided with respective openable sealing elements (41) and having a first pressure therein that is different from a second pressure in the microfluidic circuit (10). In addition, the micropump (11) and the microfluidic circuit (10) are configured so that opening the openable sealing elements (41) provides fluidic coupling between the respective chambers (40) and the microfluidic circuit (10). The openable sealing elements (41) are integrated in the monolithic semiconductor body (13).
    Type: Application
    Filed: May 10, 2006
    Publication date: August 27, 2009
    Applicant: STMicroeletronics S.r.l.
    Inventor: Mario Giovanni Scurati