Patents by Inventor Mario Laengle

Mario Laengle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11647288
    Abstract: The invention relates to a device for measuring a mask for microlithography, the device including an imaging device and an autofocusing device. The imaging device comprises an imaging optical unit with a focal plane for imaging the mask, an object stage for mounting the mask, and a movement module for producing a relative movement between object stage and imaging optical unit. The autofocusing device is configured to generate a focusing image by way of the imaging of a focusing structure in a focusing image plane intersecting the focal plane, in which the focusing structure is embodied as a gap. Furthermore, the invention relates to an autofocusing method for a device for measuring a mask for microlithography.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: May 9, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Mario Laengle
  • Publication number: 20230130187
    Abstract: An optical measuring system is used to reproduce a target wavefront of an imaging optical production system when an object is illuminated with illumination light. The optical measuring system comprises an object holder displaceable by actuator means and at least one optical component displaceable by actuator means. Within the scope of the target wavefront reproduction, a starting actuator position set (X0), in which each actuator is assigned a starting actuator position, is initially specified. An expected design wavefront (WD) which approximates the target wavefront and which the optical measuring system produces as a set wavefront is determined. A coarse measurement of a starting wavefront (W0) which the optical measuring system produces as actual wavefront after actually setting the starting actuator position set (X0) is carried out.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 27, 2023
    Inventors: Lukas Fischer, Klaus Gwosch, Markus Koch, Mario Laengle, Daniel Pagel
  • Publication number: 20220383485
    Abstract: The invention relates to a method and to an apparatus for analyzing an image of a microlithographic microstructured component wherein in the image each of a multiplicity of pixels is assigned in each case an intensity value. A method according to the invention comprises the following steps: isolating a plurality of edge fragments in the image; classifying each of the isolated edge fragments either as a relevant edge fragment or as an irrelevant edge fragment; and ascertaining contiguous segments in the image based on the relevant edge fragments.
    Type: Application
    Filed: May 24, 2022
    Publication date: December 1, 2022
    Inventors: Mario Laengle, Dmitry Klochkov
  • Publication number: 20220365449
    Abstract: The invention relates to a method for determining a registration error of a structure on a mask for semiconductor lithography, comprising the following method steps: generating an image of at least one region of the mask, determining at least one measuring contour in the image, and matching the forms of a design contour and a measuring contour to one another while at the same time matching the registration of the two contours.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 17, 2022
    Inventor: Mario Laengle
  • Publication number: 20200412939
    Abstract: The invention relates to a device for measuring a mask for microlithography, the device including an imaging device and an autofocusing device. The imaging device comprises an imaging optical unit with a focal plane for imaging the mask, an object stage for mounting the mask, and a movement module for producing a relative movement between object stage and imaging optical unit. The autofocusing device is configured to generate a focusing image by way of the imaging of a focusing structure in a focusing image plane intersecting the focal plane, in which the focusing structure is embodied as a gap. Furthermore, the invention relates to an autofocusing method for a device for measuring a mask for microlithography.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventor: Mario Laengle
  • Patent number: 10578881
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 3, 2020
    Assignees: Carl Zeiss AG, Carl Zeiss SMT GmbH
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20190121145
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Patent number: 10168539
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: January 1, 2019
    Assignees: Carl Zeiss SMT GmbH, Carl Zeiss AG
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20180173001
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Patent number: 9904060
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: February 27, 2018
    Assignees: Carl Zeiss AG, Carl Zeiss SMT GmbH
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Patent number: 9366637
    Abstract: A method for establishing distortion properties of an optical system in a microlithographic measurement system is provided. The optical system has at least one pupil plane, in which the distortion properties of the optical system are established on the basis of measuring at least one distortion pattern, which the optical system generates when imaging a predetermined structure in an image field. The distortion properties of the optical system are established on the basis of a plurality of measurements of distortion patterns, in which these measurements differ from one another in respect of the intensity distribution present in each case in the pupil plane.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: June 14, 2016
    Assignee: Carl Zeiss SMS GmbH
    Inventor: Mario Laengle
  • Patent number: 9097911
    Abstract: The invention relates to a microscope illumination that includes a laser light source that emits a light beam, beam-guiding optical elements for generating an illumination beam path that includes pupil and field planes, and a homogenizing arrangement for forming a luminous field having a homogenized intensity and configured to be directed onto a sample.
    Type: Grant
    Filed: May 31, 2008
    Date of Patent: August 4, 2015
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Mario Längle, Matthias Wald
  • Patent number: 8970951
    Abstract: During mask inspection it is necessary to identify defects which also occur during wafer exposure. Therefore, the aerial images generated in the resist and on the detector have to be as far as possible identical. In order to achieve an equivalent image generation, during mask inspection the illumination and, on the object side, the numerical aperture are adapted to the scanner used. The invention relates to a mask inspection microscope for variably setting the illumination. It serves for generating an image of the structure (150) of a reticle (145) arranged in an object plane in a field plane of the mask inspection microscope. It comprises a light source (5) that emits projection light, at least one illumination beam path (3, 87, 88), and a diaphragm for generating a resultant intensity distribution of the projection light in a pupil plane (135) of the illumination beam path (3, 87, 88) that is optically conjugate with respect to the object plane.
    Type: Grant
    Filed: August 28, 2010
    Date of Patent: March 3, 2015
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Ulrich Matejka, Holger Seitz, Norbert Rosenkranz, Mario Laengle
  • Publication number: 20150001408
    Abstract: An illumination optical unit serves for illuminating objects to be examined by a metrology system. The illumination optical unit has an optical pupil shaping assembly for generating a defined distribution of illumination angles of illumination light over an object field in which an object to be examined can be arranged. An optical field shaping assembly for generating a defined intensity distribution of the illumination light over the object field is disposed downstream of the pupil shaping assembly in the beam path of the illumination light. The field shaping assembly has at least one optical field shaping element arranged in the region of a pupil plane of the illumination optical unit. This results in an illumination optical unit which ensures an illumination which can be set in a defined manner with regard to an intensity distribution and an illumination angle distribution over the entire object field.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 1, 2015
    Inventors: Thomas Frank, Dirk Doering, Holger Seitz, Mario Laengle, Ulrich Matejka
  • Publication number: 20140369592
    Abstract: A method for establishing distortion properties of an optical system in a microlithographic measurement system is provided. The optical system has at least one pupil plane, in which the distortion properties of the optical system are established on the basis of measuring at least one distortion pattern, which the optical system generates when imaging a predetermined structure in an image field. The distortion properties of the optical system are established on the basis of a plurality of measurements of distortion patterns, in which these measurements differ from one another in respect of the intensity distribution present in each case in the pupil plane.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventor: Mario Laengle
  • Patent number: 8717581
    Abstract: A method is provided for determining the position of a structure within an image relative to a reference point, in which the structure has a center of symmetry, the method comprising: providing an image which comprises the structure and which has a reference point, carrying out at least one symmetry operation of the image with respect to the reference point, by means of which at least one mirror image is obtained which has a mirrored structure congruent relative to the structure, determining at least one displacement vector between a structure and a mirrored structure or two mirrored structures, and calculating the position of the structure as a position of the center of symmetry of the structure relative to the reference point from the at least one displacement vector. Furthermore, a position measuring device is provided for determining the position of a structure within an image relative to a reference point.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 6, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventor: Mario Laengle
  • Publication number: 20120162755
    Abstract: During mask inspection it is necessary to identify defects which also occur during wafer exposure. Therefore, the aerial images generated in the resist and on the detector have to be as far as possible identical. In order to achieve an equivalent image generation, during mask inspection the illumination and, on the object side, the numerical aperture are adapted to the scanner used. The invention relates to a mask inspection microscope for variably setting the illumination. It serves for generating an image of the structure (150) of a reticle (145) arranged in an object plane in a field plane of the mask inspection microscope. It comprises a light source (5) that emits projection light, at least one illumination beam path (3, 87, 88), and a diaphragm for generating a resultant intensity distribution of the projection light in a pupil plane (135) of the illumination beam path (3, 87, 88) that is optically conjugate with respect to the object plane.
    Type: Application
    Filed: August 28, 2010
    Publication date: June 28, 2012
    Applicant: CARL ZEISS SMS GMBH
    Inventors: Ulrich Stroessner, Holger Seitz, Norbert Rosenkranz, Mario Laengle
  • Publication number: 20120081712
    Abstract: A method is provided for determining the position of a structure within an image relative to a reference point, in which the structure has a center of symmetry, the method comprising: providing an image which comprises the structure and which has a reference point, carrying out at least one symmetry operation of the image with respect to the reference point, by means of which at least one mirror image is obtained which has a mirrored structure congruent relative to the structure, determining at least one displacement vector between a structure and a mirrored structure or two mirrored structures, and calculating the position of the structure as a position of the center of symmetry of the structure relative to the reference point from the at least one displacement vector.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Inventor: Mario Laengle
  • Publication number: 20100195198
    Abstract: The invention relates to a microscope illumination comprising at least one laser light source that emits a light beam, beam-guiding optical elements for generating an illumination beam path with distinguished planes, such as pupil and field planes, and a homogenizing arrangement for forming a luminous field that is homogenized with respect to the intensity and is to be directed onto a sample to be observed.
    Type: Application
    Filed: May 31, 2008
    Publication date: August 5, 2010
    Inventors: Mario Längle, Matthias Wald