Patents by Inventor Mario Paniccia

Mario Paniccia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125600
    Abstract: The present disclosure relates to integration of integrated photonics-based optical gyroscopes and fiber-based optical gyroscopes into portable apparatuses that may include compass features. Novel small-footprint modularized fully integrated photonics optical gyroscopes are used for non-critical axes. However, for at least one critical axis, a fiber-optic gyroscope can be used to provide bias stability below 0.1°/Hr, which is directly correlated to predicting positional accuracy in the centimeter range. The positional accuracy results from the compassing ability of the gyroscope (referred to as gyrocompass) to calculate direction of heading using the earth's rotation.
    Type: Application
    Filed: October 12, 2023
    Publication date: April 18, 2024
    Inventors: Mario Paniccia, Mike Horton, Chris Wagner
  • Publication number: 20240068813
    Abstract: An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises (SiN) waveguide-based optical components that constitute a front-end chip to launch light into and receive light from the rotation sensing element, that can be a fiber spool. The SiN waveguide-based components can be distributed between multiple layers that are stacked together to have a multi-layer configuration vertically and evanescently coupled with each other. External elements (e.g., laser, detectors, phase shifter) may be made of different material platform than SiN and can be hybridly integrated or otherwise coupled to the SiN waveguide platform. The phase shifters can be made of electro-optic material, or piezo-electric material or can be thermal phase shifters.
    Type: Application
    Filed: May 22, 2023
    Publication date: February 29, 2024
    Inventors: Mario Paniccia, Mike Horton
  • Patent number: 11846805
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: December 19, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11803013
    Abstract: Aspects of the present disclosure are directed to fabrication of large-footprint chips having integrated photonic components comprising low-loss optical waveguides. The large footprint chips require the use of multiple reticles during fabrication. Stitching adjacent reticle fields seamlessly is accomplished by overlaying into adjacent reticle fields, tapering waveguide ends, and using strategically placed alignment marks in the die.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: October 31, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Avi Feshali, Warren Bruce Jin, Mario Paniccia
  • Publication number: 20230332894
    Abstract: The present disclosure relates to integrated photonics-based optical gyroscopes with silicon nitride (SiN) waveguide-based microresonators. SiN microresonators are fabricated either on a fused silica platform or on a silicon substrate with oxide cladding. A narrow linewidth high-Q laser is hybridly integrated on a silicon photonics platform. The laser is tuned with a first SiN microresonator, and the rotational sensing component of the gyroscope comprises another SiN microresonator. The silicon photonics front-end chip has components for a balanced detection scheme to cancel noise in the optical signal coming back from the rotational sensing component.
    Type: Application
    Filed: April 10, 2023
    Publication date: October 19, 2023
    Inventor: Mario Paniccia
  • Patent number: 11788841
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: October 17, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Publication number: 20230296381
    Abstract: Novel small-footprint integrated photonics optical gyroscopes disclosed herein can provide ARW in the range of 0.05°/?Hr or below (e.g. as low as 0.02°/?Hr), which makes them comparable to fiber optic gyroscopes (FOGs) in terms of performance, at a much lower cost. The low bias stability value in the integrated photonics optical gyroscope corresponds to a low bias estimation error (in the range of 1.5°/Hr or even lower) that is crucial for safety-critical applications, such as calculating heading for autonomous vehicles, drones, aircrafts etc. The integrated photonics optical gyroscopes may be co-packaged with mechanical gyroscopes into a hybrid inertial measurement unit (IMU) to provide high-precision angular measurement for one or more axes.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Mario Paniccia, Qing Tan, Mike Horton
  • Publication number: 20230266535
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 24, 2023
    Inventors: Mario Paniccia, Avi Feshali
  • Publication number: 20230185023
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Application
    Filed: September 12, 2022
    Publication date: June 15, 2023
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11656080
    Abstract: An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises (SiN) waveguide-based optical components that constitute a front-end chip to launch light into and receive light from the rotation sensing element, that can be a fiber spool. The SiN waveguide-based components can be distributed between multiple layers that are stacked together to have a multi-layer configuration vertically and evanescently coupled with each other. External elements (e.g., laser, detectors, phase shifter) may be made of different material platform than SiN and can be hybridly integrated or otherwise coupled to the SiN waveguide platform. The phase shifters can be made of electro-optic material, or piezo-electric material or can be thermal phase shifters.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: May 23, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Mike Horton
  • Patent number: 11656081
    Abstract: Novel small-footprint integrated photonics optical gyroscopes disclosed herein can provide ARW in the range of 0.05°/?Hr or below (e.g. as low as 0.02°/?Hr), which makes them comparable to fiber optic gyroscopes (FOGs) in terms of performance, at a much lower cost. The low bias stability value in the integrated photonics optical gyroscope corresponds to a low bias estimation error (in the range of 1.5°/Hr or even lower) that is crucial for safety-critical applications, such as calculating heading for autonomous vehicles, drones, aircrafts etc. The integrated photonics optical gyroscopes may be co-packaged with mechanical gyroscopes into a hybrid inertial measurement unit (IMU) to provide high-precision angular measurement for one or more axes.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: May 23, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Qing Tan, Mike Horton
  • Patent number: 11635569
    Abstract: Disclosed herein are configurations and methods to produce very low loss waveguide structures, which can be single-layer or multi-layer. These waveguide structures can be used as a sensing component of a small-footprint integrated optical gyroscope. By using pure fused silica substrates as both top and bottom cladding around a SiN waveguide core, the propagation loss can be well below 0.1 db/meter. Low-loss waveguide-based gyro coils may be patterned in the shape of a spiral (circular or rectangular or any other shape), that may be distributed among one or more of vertical planes to increase the length of the optical path while avoiding the increased loss caused by intersecting waveguides in the state-of-the-art designs. Low-loss adiabatic tapers may be used for a coil formed in a single layer where an output waveguide crosses the turns of the spiraling coil.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: April 25, 2023
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali
  • Patent number: 11624615
    Abstract: The present disclosure relates to integrated photonics-based optical gyroscopes with silicon nitride (SiN) waveguide-based microresonators. SiN microresonators are fabricated either on a fused silica platform or on a silicon substrate with oxide cladding. A narrow linewidth high-Q laser is hybridly integrated on a silicon photonics platform. The laser is tuned with a first SiN microresonator, and the rotational sensing component of the gyroscope comprises another SiN microresonator. The silicon photonics front-end chip has components for a balanced detection scheme to cancel noise in the optical signal coming back from the rotational sensing component.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 11, 2023
    Assignee: Anello Photonics, Inc.
    Inventor: Mario Paniccia
  • Publication number: 20230003526
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Application
    Filed: September 1, 2022
    Publication date: January 5, 2023
    Inventors: Mario Paniccia, Avi Feshali
  • Patent number: 11506496
    Abstract: The present disclosure relates to system-level integration of lasers, electronics, integrated photonics-based optical components and a rotation sensing element, which can be a fiber coil or a sensing coil/micro-resonator ring on a sensing chip. Novel waveguide design on the integrated photonics chip, acting as a front-end chip, ensures precise detection of phase change in the fiber coil or the sensing chip, where the sending chip is coupled to the front end chip. Electrical and/or thermal phase modulators are integrated with the integrated photonics chip. Additionally, implant regions are introduced around the waveguides and other optical components to block unwanted/stray light into the waveguides and optical signal leaking out of the waveguide.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: November 22, 2022
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Qing Tan
  • Patent number: 11506494
    Abstract: An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises a first silicon nitride (SiN) waveguide layer that constitute a rotation sensing element; and, a second SiN waveguide layer with additional silicon nitride (SiN) waveguide-based optical components that constitute a front-end chip to launch light into and receive light from the rotation sensing element. The two SiN waveguide layers can be stacked together to have a multi-layer configuration vertically coupled with each other. External elements (e.g., laser, detectors, phase shifter) may be made of different material platform than SiN and can be hybridly integrated to the SiN waveguide platform. The phase shifters can be made of aluminum nitride (AlN) or strontium bismuth titanate (SBT).
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: November 22, 2022
    Assignee: Anello Photonics, Inc.
    Inventor: Mario Paniccia
  • Publication number: 20220317373
    Abstract: Aspects of the present disclosure are directed to fabrication of large-footprint chips having integrated photonic components comprising low-loss optical waveguides. The large footprint chips require the use of multiple reticles during fabrication. Stitching adjacent reticle fields seamlessly is accomplished by overlaying into adjacent reticle fields, tapering waveguide ends, and using strategically placed alignment marks in the die.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 6, 2022
    Inventors: Avi Feshali, Warren Bruce Jin, Mario Paniccia
  • Patent number: 11442226
    Abstract: Aspects of the present disclosure are directed to structural modifications introduced in a waveguide structure in order to more tightly pack adjacent waveguide turns in an optical gyroscope fabricated on a planar silicon platform as a photonic integrated circuit. Increasing number of turns of the gyroscope coil increases total waveguide length as well as enclosed area of the gyroscope loop, which translates to increased sensitivity to rotational measurement.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: September 13, 2022
    Assignee: ANELLO PHOTONICS, INC.
    Inventors: Avi Feshali, Mario Paniccia, Warren Bruce Jin
  • Patent number: 11441903
    Abstract: An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises a first straight waveguide to receive incoming light and to output outgoing light to be coupled to a photodetector to provide an optical signal for rotational sensing. The gyroscope comprises a first microresonator ring proximate to the first straight waveguide. Light evanescently couples from the first straight waveguide to the first microresonator ring and experiences propagation loss while circulating as a guided beam within the first microresonator ring. The guided beam evanescently couples back from the first microresonator ring to the first straight waveguide to provide the optical signal for rotational sensing after optical gain is imparted to guided beam to counter the propagation loss. In a coupled-ring configurations, the first microresonator ring acts as a loss ring, and optical gain is imparted to a second microresonator ring which acts as a gain ring.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 13, 2022
    Assignee: ANELLO PHOTONICS, INC.
    Inventor: Mario Paniccia
  • Patent number: 11435184
    Abstract: Aspects of the present disclosure are directed to configurations of compact ultra-low loss integrated photonics-based waveguides for optical gyroscope applications, and the methods of fabricating those waveguides for ease of large scale manufacturing. Four main process flows are described: (1) process flow based on a repeated sequence of oxide deposition and anneal; (2) chemical-mechanical polishing (CMP)-based process flow followed by wafer bonding; (3) Damascene process flow followed by oxide deposition and anneal, or wafer bonding; and (4) CMP-based process flows followed by oxide deposition. Any combination of these process flows may be adopted to meet the end goal of fabricating optical gyroscope waveguides in one or more layers on a silicon substrate using standard silicon fabrication technologies.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: September 6, 2022
    Assignee: Anello Photonics, Inc.
    Inventors: Mario Paniccia, Avi Feshali