Patents by Inventor Mario Schrodner

Mario Schrodner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210207815
    Abstract: The invention relates to an electric surface heater, or heating mat, based on an electrically conductive polymer foil or a conductive polymer foam that only heats locally where persons, animals or objects are positioned on the mat. Energy can thereby be saved in comparison with a full-area heater. Ideally, this local heat generation functions without any external electronic control or regulation.
    Type: Application
    Filed: January 7, 2021
    Publication date: July 8, 2021
    Applicant: THÜRINGISCHES INSTITUT FÜR TEXTIL- UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Mario SCHRÖDNER, Hannes SCHACHE, Lajos SZABÓ, Marcel EHRHARDT
  • Patent number: 10837826
    Abstract: The invention discloses a flexible, energy-self-sufficient UV dosimeter which optically indicates the absorbed dose on the basis of the intensity and duration of the irradiation via a color change. The invention contains one or more UV dosimeter modules. Exemplary UV dosimeter modules include at least one UV-sensitive photodiode (common electrode (11), hole conductor layer (21), UV absorber layer (22), cathode (23)) and an electrochromic element (common electrode (11), ion storage layer (12), electrolyte layer (13), electrochromic layer made of redox active material (14), transparent electrode (15)), between which an insulator (4) and a conductor track (5) are arranged. The electrochromic element accumulates the charge generated by the UV-sensitive photodiode and indicates this by means of a color change. The UV dosimeter can be produced as an integrated circuit using thin-film technology by successively applying and structuring organic or inorganic functional layers.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 17, 2020
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Mario Schrödner, Hannes Schache, Lars Blankenburg, Gulnara Konkin
  • Patent number: 10468164
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at least one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 5, 2019
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL-UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Klaus Heinemann, Ralf-Uwe Bauer, Thomas Welzel, Mario Schrödner, Frank Schubert, Sabine Riede
  • Publication number: 20190237224
    Abstract: The invention describes electrically conductive shaped bodies with an inherent positive temperature coefficient (PTC), produced from a composition which contains at lest one organic matrix polymer (compound component A), at least one submicroscale or nanoscale, electrically conductive additive (compound component B) and at least one phase-change material with a phase-transition temperature in the range from ?42° C. to +150° C. (compound component D). The phase-change material is incorporated into an organic network (compound component C). The electrically conductive shaped body with an inherent PTC effect is, in particular, a filament, a fibre, a spun-bonded web, a foam, a film, a foil or an injection-moulded article. The switching point for the PTC behavior is dependent on the type and also the phase-conversion temperature of the phase-change material. By way of example, a self-regulating surface heater in the form of a film, foil and/or textile can be realized in this way.
    Type: Application
    Filed: June 22, 2017
    Publication date: August 1, 2019
    Inventors: Klaus HEINEMANN, Ralf-Uwe BAUER, Thomas WELZEL, Mario SCHRÖDNER, Frank SCHUBERT, Sabine RIEDE
  • Publication number: 20190120688
    Abstract: The invention discloses a flexible, energy-self-sufficient UV dosimeter which optically indicates the absorbed dose on the basis of the intensity and duration of the irradiation via a color change. The invention contains one or more UV dosimeter modules. Exemplary UV dosimeter modules include at least one UV-sensitive photodiode (common electrode (11), hole conductor layer (21), UV absorber layer (22), cathode (23)) and an electrochromic element (common electrode (11), ion storage layer (12), electrolyte layer (13), electrochromic layer made of redox active material (14), transparent electrode (15)), between which an insulator (4) and a conductor track (5) are arranged. The electrochromic element accumulates the charge generated by the UV-sensitive photodiode and indicates this by means of a color change. The UV dosimeter can be produced as an integrated circuit using thin-film technology by successively applying and structuring organic or inorganic functional layers.
    Type: Application
    Filed: June 30, 2017
    Publication date: April 25, 2019
    Inventors: Mario SCHRÖDNER, Hannes SCHACHE, Lars BLANKENBURG, Gulnara KONKIN
  • Patent number: 9535304
    Abstract: Electrochromic module including first and second substrates is provided in which the first and/or second substrate are/is electrically conductive or are/is equipped with an electrically conductive coating. A first electrochromic polymer coating is arranged on the first substrate or the conductive coating, an ion-storage or charge-compensating layer is arranged on the second substrate or the conductive coating, and a polymer gel electrolyte is disposed between the electrochromic coating and the ion-storage or charge-compensating layer. The electrochromic polymer, a polymer of tetraarylbenzidine and (hetero)aromatic diol, is colorless in one redox state and colored in at least two redox states. The ion-storage or charge-compensating layer is formed from material selected from the group comprising cerium oxide, titanium oxide, tungsten oxide, nickel oxide, molybdenum oxide, vanadium oxide and mixtures thereof or redox-active polymer.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: January 3, 2017
    Assignee: THUERINGISCHES INSTITUT FUER TEXTIL- UND KUNSTSTOFF-FORSCHUNG E.V.
    Inventors: Gulnara Konkin, Mario Schrödner, Hannes Schache, Bernd Dawczynski
  • Publication number: 20150378234
    Abstract: Electrochromic module including first and second substrates is provided in which the first and/or second substrate are/is electrically conductive or are/is equipped with an electrically conductive coating. A first electrochromic polymer coating is arranged on the first substrate or the conductive coating, an ion-storage or charge-compensating layer is arranged on the second substrate or the conductive coating, and a polymer gel electrolyte is disposed between the electrochromic coating and the ion-storage or charge-compensating layer. The electrochromic polymer, a polymer of tetraarylbenzidine and (hetero)aromatic diol, is colourless in one redox state and colored in at least two redox states. The ion-storage or charge-compensating layer is formed from material selected from the group comprising cerium oxide, titanium oxide, tungsten oxide, nickel oxide, molybdenum oxide, vanadium oxide and mixtures thereof or redox-active polymer.
    Type: Application
    Filed: September 9, 2015
    Publication date: December 31, 2015
    Inventors: Gulnara KONKIN, Mario SCHRÖDNER, Hannes SCHACHE, Bernd DAWCZYNSKI
  • Publication number: 20090127544
    Abstract: The invention relates to the production of organic field-effect transistors (OFETs), solar cells or light-emitting diodes (OLEDs) and circuits based thereon on the surface of solvent- and/or temperature-sensitive plastics, e.g. thermoplastic injection-moulded bodies. A protective layer, which comprises a polymer compound, such as polyacrylate, polyphenol, melamine resin or polyester resin, which is applied from an aqueous-alcoholic solution or without solvent to the substrate surface or one of the function-determining layers of the electronic semiconductor component in a low-temperature process at temperatures of less than 100° C. and dried, protects the substrate against undesirable action of solvents and may simultaneously serve as a planarization layer and/or as as electrical insulation layer.
    Type: Application
    Filed: July 26, 2006
    Publication date: May 21, 2009
    Inventors: Mario Schrodner, Karin Schultheis, Hannes Schache
  • Publication number: 20050106507
    Abstract: The invention relates to a device and process for laser structuring and applications thereof in the production of semiconductors.
    Type: Application
    Filed: March 12, 2003
    Publication date: May 19, 2005
    Inventors: Adolf Bernds, Wolfgang Clemens, Hans-Klaus Roth, Mario Schrodner, Ralf-Ingo Stohn