Patents by Inventor Marit Seidel

Marit Seidel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7741208
    Abstract: A wedge wedge wire loop is formed with the steps: a) lowering the capillary onto the first connection point and applying a predefined bond force and ultrasound for producing a wedge connection on the first connection point, b) raising the capillary by a predetermined distance D1 in an essentially vertical direction, c) moving the capillary laterally and downwards in order to bend the wire and press it against the wedge connection, d) raising the capillary and moving the capillary in order to form a wire loop and to attach the wire to the second connection point, and e) tearing off the wire.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 22, 2010
    Assignee: Oerlikon Assembly Equipment Ltd.
    Inventors: Marit Seidel, Jan Mattmueller
  • Publication number: 20070231959
    Abstract: A wedge wedge wire loop is formed with the steps: a) lowering the capillary onto the first connection point and applying a predefined bond force and ultrasound for producing a wedge connection on the first connection point, b) raising the capillary by a predetermined distance D1 in an essentially vertical direction, c) moving the capillary laterally and downwards in order to bend the wire and press it against the wedge connection, d) raising the capillary and moving the capillary in order to form a wire loop and to attach the wire to the second connection point, and e) tearing off the wire.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 4, 2007
    Applicant: Oerlikon Assembly Equipment Ltd. Steinhausen
    Inventors: Marit Seidel, Jan Mattmueller
  • Patent number: 6131799
    Abstract: In a method of making a wire connection of predetermined shape between a first connecting point located on a semiconductor chip and a second connecting point a capillary is moved along a predetermined trajectory. After attaching the wire at the first connecting point the capillary is moved up to a first point for the performing of one or two kinks and for the pulling out of the wire as far as the required total length of the wire connection. From the first point, the capillary is moved along a circular arc up to a second point, at which the wire is locked in the capillary. The circular arc is centered in the first connecting point or in the immediate vicinity of the first connecting point. The method is suitable for the wiring of CSPs (Chip Scale Packages). The movement along the circular arc prevents the wire from being pushed back through the capillary. As soon as the wire is locked in the capillary, the second connecting point can be approached without difficulty.
    Type: Grant
    Filed: January 7, 1999
    Date of Patent: October 17, 2000
    Assignee: Esec SA
    Inventors: Hans Egger, Marit Seidel
  • Patent number: 6119926
    Abstract: On the production of wire connections (wire bonding) which start from a semiconductor chip and end on a substrate (2b) the capillary (12) guiding the wire (3) should be moved to an end section (s3) of its trajectory in a specific, programmed way in order to eliminate as far as possible reactions on the geometry of the wire bridge on bonding of the wire to the substrate and to produce flawless bond connections. The end section (s3) in which the capillary (12) moves slowly begins at a predetermined height (H) and ends on the substrate at the second connection point (5). In the end section (s3) the downward movement (vv) of the capillary is superimposed by a horizontal movement (vh) which is directed away from the already existing connection of the wire (3) to the chip and which continually decreases in relationship to the downward movement (vv).
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: September 19, 2000
    Assignee: Esec SA
    Inventors: Hans Egger, Marit Seidel, Daniel von Flue