Patents by Inventor Mariusz Tadeusz MIKA

Mariusz Tadeusz MIKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951539
    Abstract: A method for metal jetting is disclosed. The method for metal jetting includes introducing a first gas into an outer nozzle of an ejector nozzle from a first gas source introducing an additive to the first gas from a second source, combining the additive with the first gas. The method for metal jetting also includes ejecting a droplet of molten metal printing material from the ejector nozzle. The method for metal jetting includes allowing the additive to react with the droplet of molten metal printing material to form a modified molten metal printing material.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 9, 2024
    Assignee: ADDITIVE TECHNOLOGIES, LLC
    Inventors: Mariusz Tadeusz Mika, Peter M. Gulvin
  • Patent number: 11931804
    Abstract: A metal component is disclosed. The metal component has a first dimension greater than 5 mm, and a second dimension greater than 5 mm. The metal component may include where the alloy includes titanium, aluminum, vanadium, carbon, nitrogen, and oxygen. The alloy may include zirconium, titanium, copper, nickel, and beryllium. The metal component is not die-cast, melt-spun, or forged. An ejector and a method for jetting the metal component is also disclosed.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: March 19, 2024
    Assignee: ADDITIVE TECHNOLOGIES, LLC
    Inventors: Mariusz Tadeusz Mika, Paul J. McConville, Peter M. Gulvin, Colin G. Fletcher, Daimon Heller, Miranda Moschel
  • Publication number: 20230191487
    Abstract: A metal component is disclosed. The metal component has a first dimension greater than 5 mm, and a second dimension greater than 5 mm. The metal component may include where the alloy includes titanium, aluminum, vanadium, carbon, nitrogen, and oxygen. The alloy may include zirconium, titanium, copper, nickel, and beryllium. The metal component is not die-cast, melt-spun, or forged. An ejector and a method for jetting the metal component is also disclosed.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: XEROX CORPORATION
    Inventors: Mariusz Tadeusz MIKA, Paul J. MCCONVILLE, Peter M. GULVIN, Colin G. FLETCHER, Daimon HELLER, Miranda MOSCHEL
  • Publication number: 20230097037
    Abstract: A system for jetting metal is also disclosed, which includes a nozzle orifice in connection with the inner cavity and configured to eject one or more droplets of liquid metal, a source of printing material located external to the ejector, and an alloying system located between the source of printing material and the ejector. A method for metal jetting is disclosed, which includes introducing a printing material from a feed source into an alloying system. The method for metal jetting also includes depositing an alloying material within the alloying system onto the printing material to produce an alloyed printing material, introducing the alloyed printing material into an ejector defining a cavity which can retain a printing material, melting the alloyed printing material in the cavity of the ejector, ejecting the alloyed printing material from the ejector.
    Type: Application
    Filed: September 27, 2021
    Publication date: March 30, 2023
    Applicant: XEROX CORPORATION
    Inventors: Colin Gray FLETCHER, Mariusz Tadeusz MIKA, Miranda MOSCHEL, Daimon HELLER
  • Publication number: 20230063825
    Abstract: An ejector for jetting modified metal is disclosed. The ejector for jetting modified metal also includes a nozzle orifice in connection with the inner cavity and configured to eject one or more droplets of liquid metal. The ejector for jetting modified metal includes a first gas source associated with the inner cavity and an external portion of the nozzle. The ejector for jetting modified metal also includes a second gas source coupled to the first gas source and in proximity to an external portion of the nozzle orifice.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Applicant: XEROX CORPORATION
    Inventors: Mariusz Tadeusz MIKA, Peter M. GULVIN
  • Publication number: 20230066534
    Abstract: A method for metal jetting is disclosed. The method for metal jetting includes introducing a first gas into an outer nozzle of an ejector nozzle from a first gas source introducing an additive to the first gas from a second source, combining the additive with the first gas. The method for metal jetting also includes ejecting a droplet of molten metal printing material from the ejector nozzle. The method for metal jetting includes allowing the additive to react with the droplet of molten metal printing material to form a modified molten metal printing material.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Applicant: XEROX CORPORATION
    Inventors: Mariusz Tadeusz MIKA, Peter M. GULVIN