Patents by Inventor Marja Ilmen

Marja Ilmen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230175024
    Abstract: The present invention relates to the fields of industrial biotechnology, renewable raw materials and production of organic acids. Specifically, the invention relates to a method of producing an organic acid or a salt thereof. Still, the present invention relates to a mixture comprising legume molasses and calcium hydroxide or a mixture obtained by combining a carbon substrate composition comprising legume molasses and an aqueous suspension comprising calcium hydroxide, for producing an organic acid or a salt thereof by a microorganism, and use of said mixture for producing an organic acid or a salt thereof. Still further, the present invention relates to a method of producing one or more products selected from the group consisting of polymers, polyesters and polylactic acids.
    Type: Application
    Filed: May 26, 2021
    Publication date: June 8, 2023
    Inventors: Simo ELLILÄ, Marja ILMEN, Eemeli HYTÖNEN
  • Publication number: 20220275409
    Abstract: The present invention relates to the fields of industrial biotechnology, renewable raw materials and microbial production organisms. Specifically, the invention relates to a method of producing lactic acid or lactate or one or more products selected from the group consisting of polymers, polyesters and polylactic acids. Still, the present invention relates to a genetically modified fungus comprising increased specific enzyme activities, a method of preparing said genetically modified fungus, and use of said fungus for producing lactic acid, lactate or polymers.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 1, 2022
    Inventors: Simo ELLILÄ, Marja ILMÉN, Maija-Leena VEHKOMÄKI
  • Patent number: 11254922
    Abstract: Provided are a novel isoprene synthase derived from sweet potato and a method of preparing isoprene using the same, and more specifically, a novel isoprene synthase derived from sweet potato, a gene encoding the isoprene synthase, a host cell transformed with the gene, and a method of preparing isoprene using the same. The isoprene synthase of the present invention may have higher isoprene productivity as compared to isoprene synthases known in the related art to thereby be effectively used in isoprene biosynthesis and preparation of an isoprene polymer using the same.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: February 22, 2022
    Assignee: SK Innovation Co., Ltd.
    Inventors: Merja Oja, Anne Huuskonen, Marja Ilmén, Jae Hoon Jo, Simon MoonGeun Jung, Outi Koivistoinen, Sang Min Lee, Laura Ruohonen
  • Publication number: 20210388398
    Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluyveromyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.
    Type: Application
    Filed: December 22, 2020
    Publication date: December 16, 2021
    Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willies, John Bardsley, Anu Koivula, Sanni Voutilainen
  • Patent number: 11124810
    Abstract: The present invention relates to a method of converting oxalate to oxalyl-coA and/or oxalyl-coA to glyoxylate in a fungus and to a method of producing glycolic acid. Still, the present invention relates to a genetically modified fungus comprising increased enzyme activity associated with oxalyl-CoA. And furthermore, the present invention relates to use of the fungus of the present invention for producing oxalate, oxalyl-coA, glyoxylate and/or glycolic acid from a carbon substrate. Still furthermore, the present invention relates to a method of producing specific products and to a method of preparing the genetically modified fungus of the present invention.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: September 21, 2021
    Assignee: Teknologian tutkimuskeskus VTT Oy
    Inventors: Mervi Toivari, Marja Ilmén, Merja Penttilä
  • Patent number: 10704064
    Abstract: Provided are a recombinant yeast producing 3-hydroxypropionic acid (3-HP) and a method for producing 3-HP using the same, more particularly, a recombinant yeast producing 3-HP, comprising an exogenous AADH gene; an endogenous or exogenous ACC gene; an exogenous MCR gene; and an exogenous HPDH gene, and producing 3-HP through [Pyruvate Acetaldehyde?Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP] biosynthesis pathway, and a method for producing 3-HP using the same.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 7, 2020
    Assignee: SK Innovation Co., Ltd.
    Inventors: Joong Min Park, Jae Yeon Park, Woo Chan Park, Sang Min Lee, Young Bin Seo, Merja Oja, Outi Koivistoinen, Andrew Conley, Marja Ilmen, Laura Ruohonen, Paula Jouhten
  • Publication number: 20200199632
    Abstract: The present invention relates to a method of converting oxalate to oxalyl-coA and/or oxalyl-coA to glyoxylate in a fungus and to a method of producing glycolic acid. Still, the present invention relates to a genetically modified fungus comprising increased enzyme activity associated with oxalyl-CoA. And furthermore, the present invention relates to use of the fungus of the present invention for producing oxalate, oxalyl-coA, glyoxylate and/or glycolic acid from a carbon substrate. Still furthermore, the present invention relates to a method of producing specific products and to a method of preparing the genetically modified fungus of the present invention.
    Type: Application
    Filed: July 27, 2018
    Publication date: June 25, 2020
    Inventors: Mervi Toivari, Marja Ilmén, Merja Penttilä
  • Publication number: 20190203193
    Abstract: Provided are a novel isoprene synthase derived from sweet potato and a method of preparing isoprene using the same, and more specifically, a novel isoprene synthase derived from sweet potato, a gene encoding the isoprene synthase, a host cell transformed with the gene, and a method of preparing isoprene using the same. The isoprene synthase of the present invention may have higher isoprene productivity as compared to isoprene synthases known in the related art to thereby be effectively used in isoprene biosynthesis and preparation of an isoprene polymer using the same.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 4, 2019
    Inventors: Merja Oja, Anne Huuskonen, Marja Ilmén, Jae Hoon Jo, Simon MoonGeun Jung, Outi Koivistoinen, Sang Min Lee, Laura Ruohonen
  • Publication number: 20180258449
    Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluyveromyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 13, 2018
    Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willies, John Bardsley, Anu Koivula, Sanni Voutilainen
  • Patent number: 9988652
    Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterologous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluveryomyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: June 5, 2018
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
  • Patent number: 9758799
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: September 12, 2017
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Publication number: 20170240932
    Abstract: Provided are a recombinant yeast producing 3-hydroxypropionic acid (3-HP) and a method for producing 3-HP using the same, more particularly, a recombinant yeast producing 3-HP, comprising an exogenous AADH gene; an endogenous or exogenous ACC gene; an exogenous MCR gene; and an exogenous HPDH gene, and producing 3-HP through [Pyruvate Acetaldehyde?Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP] biosynthesis pathway, and a method for producing 3-HP using the same.
    Type: Application
    Filed: August 28, 2015
    Publication date: August 24, 2017
    Inventors: Joong Min Park, Jae Yeon Park, Woo Chan Park, Sang Min Lee, Young Bin Seo, Merja Oja, Outi Koivistoinen, Andrew Conley, Marja Ilmen, Laura Ruohonen, Paula Jouhten
  • Publication number: 20160340697
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Application
    Filed: July 5, 2016
    Publication date: November 24, 2016
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 9416401
    Abstract: The invention is related to a method and test kits for quantitative determination of polynucleotide amounts present in a sample. The test kit comprises organized pools with polynucleotide probes having distinct sizes and optionally provided with tracer tags or primer tags. The probes are allowed to hybridize with affinity tagged analyte polynucleotides from the sample. The result is hybrids, which can be recovered on a separation aiding tool provided with the pair of the affinity tag. After the quantitative release of the probes, the probes are either directly recorded, or if primer tagged, they are amplified and optionally provided with a tracer tag before recording. The invention provides a sensitive and quantitative determination of the amount polynucleotides present in a cell or tissue sample and allows a quantitative assessment of variations in the amounts of polynucleotides as a response to inherent changes or due to external stimuli.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: August 16, 2016
    Assignee: VALTION TEKNILLINEN TUTKIMUSKESKUS
    Inventors: Hans Söderlund, Kari Kataja, Marja Paloheimo, Marja Ilmen, Kristiina Takkinen
  • Patent number: 9410158
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: August 9, 2016
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Publication number: 20160010117
    Abstract: The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthermore, the invention demonstrates for the first time the ability of Kluveryomyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 14, 2016
    Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
  • Patent number: 9102955
    Abstract: Host cells, comprising Kluveryomyces expressing heterologous cellulases produce ethanol from cellulose In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose The recombinant yeast strains and co-cultures of the yeast strains can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of sacchanfication and fermentation processes.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: August 11, 2015
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: John McBride, Elena Brevnova, Mark Mellon, Allan Froehlich, Kristen Deleault, Vineet Rajgarhia, Riaan Den Haan, Merja Penttila, Marja Ilmen, Matti Siika-Aho, Jaana Uusitalo, Emily A. Stonehouse, Alan Gilbert, Haowen Xu, Deidre Willes, John Bardsley, Anu Koivula, Sanni Voutilainen
  • Publication number: 20140080192
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 20, 2014
    Applicant: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttila, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 8623633
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: May 14, 2011
    Date of Patent: January 7, 2014
    Assignee: Cargill Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttilä, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen
  • Patent number: 8440451
    Abstract: Yeast cells are transformed with an exogenous xylose isomerase gene. Additional genetic modifications enhance the ability of the transformed cells to ferment xylose to ethanol or other desired fermentation products. Those modifications include deletion of non-specific or specific aldose reductase gene(s), deletion of xylitol dehydrogenase gene(s) and/or overexpression of xylulokinase.
    Type: Grant
    Filed: May 14, 2011
    Date of Patent: May 14, 2013
    Assignee: Cargill, Incorporated
    Inventors: Vineet Rajgarhia, Kari Koivuranta, Merja Penttilä, Marja Ilmen, Pirkko Suominen, Aristos Aristidou, Christopher Kenneth Miller, Stacey Olson, Laura Ruohonen