Patents by Inventor Mark A. Govoni

Mark A. Govoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11695219
    Abstract: A stacked patch antenna array includes: a conductive ground plane configured to connect to a plurality of electrical transmission lines for transmitting and/or receiving electrical signals; a driven layer adjacent to the conductive ground plane formed of a dielectric material and comprising a plurality of first resonant circular patches, each electrically connecting to a respective electrical transmission line such that a received electrical signal excites and generates an electromagnetic signal and/or a received electromagnetic signal excites and generates an electrical signal; an electrically insulating spacer adjacent to the driven layer; and a coupled layer adjacent to the electrically insulating spacer formed of a dielectric material and comprising a plurality of second resonant circular patches which are symmetrically positioned with respect to the first circular resonant patches of the driven layer and excited by the electromagnetic waves generated by the first resonant circular patches, wherein the el
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 4, 2023
    Assignee: America as represented by the Secretary of the Army
    Inventors: Mark A. Govoni, Seth A. McCormick
  • Publication number: 20220368028
    Abstract: A stacked patch antenna array includes: a conductive ground plane configured to connect to a plurality of electrical transmission lines for transmitting and/or receiving electrical signals; a driven layer adjacent to the conductive ground plane formed of a dielectric material and comprising a plurality of first resonant circular patches, each electrically connecting to a respective electrical transmission line such that a received electrical signal excites and generates an electromagnetic signal and/or a received electromagnetic signal excites and generates an electrical signal; an electrically insulating spacer adjacent to the driven layer; and a coupled layer adjacent to the electrically insulating spacer formed of a dielectric material and comprising a plurality of second resonant circular patches which are symmetrically positioned with respect to the first circular resonant patches of the driven layer and excited by the electromagnetic waves generated by the first resonant circular patches, wherein the el
    Type: Application
    Filed: May 17, 2021
    Publication date: November 17, 2022
    Inventors: Mark A. Govoni, Seth A. McCormick
  • Patent number: 11394471
    Abstract: A method and apparatus for detecting RF power comprising an input port configured to receive a high-power RF signal, at least one diamond chip attenuator, coupled to the input port, configured to attenuate the high-power RF signal, and an RF detector integrated circuit, coupled to the at least one diamond chip attenuator, configured to convert the attenuated RF signal into an output indicium representing a power level of the high-powered RF signal.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: July 19, 2022
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Mark A. Govoni, John T. Clark
  • Patent number: 8035551
    Abstract: A pulsed compression noise correlation radar uses noise modulation and pulse compression technology to scramble recognizable transmit signal characteristics and reduce transmit energy. The pulsed noise correlation radar advantageously uses pulse compression technology, a pulsed linear frequency modulated noise correlation mixer, and a new and innovative noise fused waveform to automatically correlate the pulsed linear frequency modulated (LFM) noise waveform with the received signal. The pulsed noise correlation radar apparatus and system now make it possible to effectively reduce transmitting power, preserve high band widths through oversampling in the receiver, and achieve multi-channel array frequency diversity. A secure pulsed compression noise correlation radar system and methods for undetected target detection with pulsed noise correlation radar and a pulsed LFM fused noise waveform are also provided.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: October 11, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Mark A. Govoni
  • Patent number: 7961138
    Abstract: A detector apparatus, detection system, and method are provided for determining optimum operational angles based on the statistical correlation of wavelength-specific electromagnetic propagation and surface interaction. These techniques can be used within the radar community in both military and commercial radar applications for airborne radar system users to determine optimum operational depression angles based on the purpose of the effort, the operational frequency, and the terrain-type to be encountered. The method requires the user to interface with a standard computer equipped with the commercially available MATLABĀ® software package where the operation is presented as a graphic user interface (GUI) that once invoked allows the user to set specific parameters corresponding to the desired terrain type. Upon doing so, the algorithms are exercised and the results are displayed in a series of figures identifying the optimum operational angles.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: June 14, 2011
    Assignee: The United States of America as respresented by the Secretary of the Army.
    Inventor: Mark A. Govoni
  • Patent number: 7486229
    Abstract: The Ground Moving Target Indicator (GMTI) target detection accuracy test system receives, compares and analyzes GMTI test data that is formatted according to the NATO-EX (v.2.01) Standard. The GMTI target detection accuracy test system also uses Global Positioning System (GPS) data from the objective target and target reports generated by the GMTI sensor to display the simulation test results. At the conclusion of the GMTI sensor test, both the GPS and GMTI data are collected and compared using a computer processor and the results are displayed using the MATLABĀ® program to better indicate detection accuracy and provide a higher level of target detection accuracy. A method for testing artillery target detection accuracy method is also provided for characterizing the performance of any GMTI adhering to the NATO-EX Standard and testing against an objective target outfitted with GPS instrumentation.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: February 3, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Mark A. Govoni