Patents by Inventor Mark A. Greiner

Mark A. Greiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11731482
    Abstract: This disclosure details integrated thermal management systems for thermally managing electrified vehicle components. Exemplary integrated thermal management systems may include a thermal module assembly that may be integrated into a front end structure of a flexible modular platform of the electrified vehicle. The integrated thermal management systems may be controlled in a plurality of distinct thermal control modes for thermal managing various subcomponents and for addressing various vehicle auxiliary loads (e.g., passenger cabin heating loads, passenger cabin cooling loads, etc.).
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: August 22, 2023
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Daniel C. Huang, Sunil Katragadda, Ravi Gopal, Clay Wesley Maranville, Christopher Mark Greiner
  • Publication number: 20230158854
    Abstract: This disclosure details integrated thermal management systems for thermally managing electrified vehicle components. Exemplary integrated thermal management systems may include a thermal module assembly that may be integrated into a front end structure of a flexible modular platform of the electrified vehicle. The integrated thermal management systems may be controlled in a plurality of distinct thermal control modes for thermal managing various subcomponents and for addressing various vehicle auxiliary loads (e.g., passenger cabin heating loads, passenger cabin cooling loads, etc.).
    Type: Application
    Filed: December 30, 2022
    Publication date: May 25, 2023
    Inventors: Daniel HUANG, Sunil KATRAGADDA, Ravi GOPAL, Clay Wesley MARANVILLE, Christopher Mark GREINER
  • Patent number: 11541715
    Abstract: This disclosure details integrated thermal management systems for thermally managing electrified vehicle components. Exemplary integrated thermal management systems may include a thermal module assembly that may be integrated into a front end structure of a flexible modular platform of the electrified vehicle. The integrated thermal management systems may be controlled in a plurality of distinct thermal control modes for thermal managing various subcomponents and for addressing various vehicle auxiliary loads (e.g., passenger cabin heating loads, passenger cabin cooling loads, etc.).
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 3, 2023
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Daniel C. Huang, Sunil Katragadda, Ravi Gopal, Clay Wesley Maranville, Christopher Mark Greiner
  • Patent number: 11515353
    Abstract: Multicolor, stacked detector devices, focal plane arrays including multicolor, stacked detector devices, and methods of fabricating the same are disclosed. In one embodiment, a stacked multicolor detector device includes a first detector and a second detector. The first detector includes a first detector structure and a first ground plane adjacent the first detector structure. The second detector includes a second detector structure and a second ground plane adjacent the second detector structure. At least one of the first ground plane and the second ground plane is transmissive to radiation in a predetermined spectral band. The first detector and the second detector are in a stacked relationship.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 29, 2022
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Daniel Chmielewski, Yajun Wei, Nansheng Tang, Darrel Endres, Michael Garter, Mark Greiner
  • Publication number: 20220249399
    Abstract: A composition comprising an amount of an anti-oxidant comprising one or more of ubiquinol, MitoQ, vitamin E, vitamin C, ascorbate-2-phosphate, idebenone, pyrroloquinoline quinone (PQQ), N-acetyl-L-cysteine (NAC), palmitate, reduced glutathione, or a C14-C18 saturated fatty acid effective to preserve, e.g., corneal tissue, and methods of using the composition, are provided.
    Type: Application
    Filed: March 4, 2020
    Publication date: August 11, 2022
    Inventors: Aliasger K. Salem, Youssef Wahib Naguib lbrahim, Somaya Ali Mohammed Elsaid Abdelrahman, Jessica M. Skeie, Benjamin T. Aldrich, Gregory Schmidt, Cynthia R. Reed, Mark A. Greiner, Darryl Y. Nishimura, Sanjib Saha
  • Patent number: 11411040
    Abstract: Methods of fabricating multicolor, stacked detector devices and focal plane arrays are disclosed. In one embodiment, a method of fabricating a stacked multicolor device includes forming a first detector by depositing a first detector structure on a first detector substrate, and depositing a first ground plane on the first detector structure, wherein the first ground plane is transmissive to radiation in a predetermined spectral band. The method further includes bonding an optical carrier wafer to the first ground plane, removing the first detector substrate, and forming a second detector. The second detector is formed by depositing a second detector structure on a second detector substrate, and depositing a second ground plane on the second detector structure. The method further includes depositing a dielectric layer on one of the first detector structure and the second ground plane, bonding the first detector to the second detector, and removing the second detector substrate.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 9, 2022
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Yajun Wei, Daniel Chmielewski, Nansheng Tang, Darrel Endres, Michael Garter, Mark Greiner
  • Publication number: 20220097475
    Abstract: This disclosure details integrated thermal management systems for thermally managing electrified vehicle components. Exemplary integrated thermal management systems may include a thermal module assembly that may be integrated into a front end structure of a flexible modular platform of the electrified vehicle. The integrated thermal management systems may be controlled in a plurality of distinct thermal control modes for thermal managing various subcomponents and for addressing various vehicle auxiliary loads (e.g., passenger cabin heating loads, passenger cabin cooling loads, etc.).
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Inventors: Daniel C. HUANG, Sunil KATRAGADDA, Ravi GOPAL, Clay Wesley MARANVILLE, Christopher Mark GREINER
  • Publication number: 20210082991
    Abstract: Multicolor, stacked detector devices, focal plane arrays including multicolor, stacked detector devices, and methods of fabricating the same are disclosed. In one embodiment, a stacked multicolor detector device includes a first detector and a second detector. The first detector includes a first detector structure and a first ground plane adjacent the first detector structure. The second detector includes a second detector structure and a second ground plane adjacent the second detector structure. At least one of the first ground plane and the second ground plane is transmissive to radiation in a predetermined spectral band. The first detector and the second detector are in a stacked relationship.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Applicant: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Daniel Chmielewski, Yajun Wei, Nansheng Tang, Darrel Endres, Michael Garter, Mark Greiner
  • Publication number: 20210082992
    Abstract: Methods of fabricating multicolor, stacked detector devices and focal plane arrays are disclosed. In one embodiment, a method of fabricating a stacked multicolor device includes forming a first detector by depositing a first detector structure on a first detector substrate, and depositing a first ground plane on the first detector structure, wherein the first ground plane is transmissive to radiation in a predetermined spectral band. The method further includes bonding an optical carrier wafer to the first ground plane, removing the first detector substrate, and forming a second detector. The second detector is formed by depositing a second detector structure on a second detector substrate, and depositing a second ground plane on the second detector structure. The method further includes depositing a dielectric layer on one of the first detector structure and the second ground plane, bonding the first detector to the second detector, and removing the second detector substrate.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 18, 2021
    Applicant: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Yajun Wei, Daniel Chmielewski, Nansheng Tang, Darrel Endres, Michael Garter, Mark Greiner
  • Patent number: 10886325
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength in a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: January 5, 2021
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres, Robert Jones
  • Patent number: 10752215
    Abstract: A system for automatically controlling a defog/defrost function of a vehicle climate control system includes a controller configured to calculate an ambient dew point temperature value from a plurality of inputs received from a sensor array. The controller is further configured to set a condensation indicator if a calculated difference between a window exterior surface temperature value input received from the sensor array and the calculated ambient dew point temperature value is less than or equal to a predetermined threshold value. The controller actuates the vehicle climate control system defog/defrost function and/or a window wiper system in response to the set condensation indicator.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: August 25, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Kai Wang, Christopher Mark Greiner
  • Patent number: 10714531
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength in a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 14, 2020
    Assignee: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres
  • Publication number: 20190359175
    Abstract: A system for automatically controlling a defog/defrost function of a vehicle climate control system includes a controller configured to calculate an ambient dew point temperature value from a plurality of inputs received from a sensor array. The controller is further configured to set a condensation indicator if a calculated difference between a window exterior surface temperature value input received from the sensor array and the calculated ambient dew point temperature value is less than or equal to a predetermined threshold value. The controller actuates the vehicle climate control system defog/defrost function and/or a window wiper system in response to the set condensation indicator.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 28, 2019
    Inventors: Kai Wang, Christopher Mark Greiner
  • Publication number: 20180294309
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength is a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Application
    Filed: May 4, 2018
    Publication date: October 11, 2018
    Applicant: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres
  • Publication number: 20180294301
    Abstract: Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength is a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
    Type: Application
    Filed: May 4, 2018
    Publication date: October 11, 2018
    Applicant: L3 Cincinnati Electronics Corporation
    Inventors: Yajun Wei, Steven Allen, Michael Garter, Mark Greiner, David Forrai, Darrel Endres, Robert Jones
  • Patent number: 9702605
    Abstract: Systems and methods for operating a heater for a passenger cabin of a vehicle. In one example, fan speed of an evaporator cooling fan is adjusted to improve heating efficiency. In particular, fan speed is incrementally increased and maintained at the higher speed if output power of a compressor is reduced by more than an amount of power used to incrementally increase the fan speed.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: July 11, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher Mark Greiner, Michael Steven Wallis
  • Patent number: 9228472
    Abstract: A method, comprising during a vehicle engine cold start, opening a first valve coupled between a first container containing an adsorbent and a second container containing an adsorbate, circulating a first fluid through a first conduit coupled to a first heat exchanger located within the first container and a second heat exchanger located outside the first container, and circulating a second fluid through a second conduit coupled to the second heat exchanger. In this way, heat may be generated at the adsorber during a cold start and subsequently transferred to the cooling jacket of the vehicle engine and/or other vehicle compartments, thereby decreasing the warm-up time for the engine.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: January 5, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher Mark Greiner, Poyu Tsou, Kai Wang
  • Patent number: 9087064
    Abstract: Hierarchical levels of data sets are defined. An object is provided, and the object includes a user-defined delimiter used to indicate a desired level of hierarchy for data sets. A set of rules associated with the object is used to present data sets. The object and the set of rules are employed to determine one or more data sets to be presented to a user. The presenting is based on the object and the set of rules, and the presenting presents the one or more data sets in a hierarchy defined by at least the object.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 21, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Mark A. Greiner
  • Publication number: 20150158369
    Abstract: Systems and methods for operating a heater for a passenger cabin of a vehicle. In one example, fan speed of an evaporator cooling fan is adjusted to improve heating efficiency. In particular, fan speed is incrementally increased and maintained at the higher speed if output power of a compressor is reduced by more than an amount of power used to incrementally increase the fan speed.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 11, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Mark Greiner, Michael Steven Wallis
  • Patent number: 9028591
    Abstract: A climate control system and a method of control. The climate control system may have first and second adsorbers and a door that controls airflow through the first and second adsorbers. The first adsorber adsorbs moisture from the airflow and the second adsorber desorbs moisture when the door is in a first position.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Kai Wang, Christopher Mark Greiner