Patents by Inventor Mark A. Lown

Mark A. Lown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240181641
    Abstract: Robotic systems can be capable of collision detection and avoidance. A robotic medical system can include a robotic arm, an input device configured to receive one or more user inputs for controlling the robotic arm, and a display configured to provide information related to the robotic medical system. The display can include a first icon that is representative of the robotic arm and includes at least a first state and a second state. The robotic medical system can be configured to control movement of the robotic arm based on the user inputs received at the input device in real time, determine a distance between the robotic arm and a component, and provide information to the user about potential, near, and/or actual collisions between the arm and the component.
    Type: Application
    Filed: February 12, 2024
    Publication date: June 6, 2024
    Inventors: Ryan J. MURPHY, Mark A. LOWN, Janet Helene GOLDENSTEIN, Alexander Tarek HASSAN, Felix MALINKEVICH
  • Patent number: 11931901
    Abstract: Robotic systems can be capable of collision detection and avoidance. A robotic medical system can include a robotic arm, an input device configured to receive one or more user inputs for controlling the robotic arm, and a display configured to provide information related to the robotic medical system. The display can include a first icon that is representative of the robotic arm and includes at least a first state and a second state. The robotic medical system can be configured to control movement of the robotic arm based on the user inputs received at the input device in real time, determine a distance between the robotic arm and a component, and provide information to the user about potential, near, and/or actual collisions between the arm and the component.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: March 19, 2024
    Assignee: Auris Health, Inc.
    Inventors: Ryan J. Murphy, Mark A. Lown, Janet Helene Goldenstein, Alexander Tarek Hassan, Felix Malinkevich
  • Patent number: 11676511
    Abstract: The systems and methods disclosed herein are directed to robotically controlling a medical device to utilize manual skills and techniques developed by surgeons. The system can include an emulator representing a medical device. The system can include at least one detector configured to track the emulator. The system can also include an imaging device configured to track the medical device. The system may be configured to move the medical device to reduce an alignment offset between the location of the emulator and the location of the medical device, to move the imaging device based on the translational movement of the emulator, and/or to move the medical device based on data indicative of an orientation of the emulator.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: June 13, 2023
    Assignee: Auris Health, Inc.
    Inventors: Michael Shyh-Yen Ho, David Stephen Mintz, Edward Joseph Menard, Mark A. Lown, Jason Thomas Wilson, Yanan Huang
  • Publication number: 20210402603
    Abstract: Robotic systems can be capable of collision detection and avoidance. A robotic medical system can include a robotic arm, an input device configured to receive one or more user inputs for controlling the robotic arm, and a display configured to provide information related to the robotic medical system. The display can include a first icon that is representative of the robotic arm and includes at least a first state and a second state. The robotic medical system can be configured to control movement of the robotic arm based on the user inputs received at the input device in real time, determine a distance between the robotic arm and a component, and provide information to the user about potential, near, and/or actual collisions between the arm and the component.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 30, 2021
    Inventors: Ryan J. MURPHY, Mark A. LOWN, Janet Helene GOLDENSTEIN, Alexander Tarek HASSAN, Felix MALINKEVICH
  • Publication number: 20210298850
    Abstract: Certain aspects relate to admittance control modes for a robotic surgery system. The admittance control modes can be based on detecting and/or measuring forces (rotational and/or nonrotational) on a robotic arm and moving the robotic arm in response to such interactions. The forces can include direct manual interaction with the robotic arm by a clinician. The movement of the robotic arm can be within a nullspace that maintains the positions of a medical instrument.
    Type: Application
    Filed: February 1, 2021
    Publication date: September 30, 2021
    Inventors: Yanan Huang, Ying Mao, Nicholas J. Eyre, Pouya Sabetian, Mark A. Lown, Jason Tomas Wilson
  • Publication number: 20210304639
    Abstract: The systems and methods disclosed herein are directed to robotically controlling a medical device to utilize manual skills and techniques developed by surgeons. The system can include an emulator representing a medical device. The system can include at least one detector configured to track the emulator. The system can also include an imaging device configured to track the medical device. The system may be configured to move the medical device to reduce an alignment offset between the location of the emulator and the location of the medical device, to move the imaging device based on the translational movement of the emulator, and/or to move the medical device based on data indicative of an orientation of the emulator.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Michael Shyh-Yen HO, David Stephen MINTZ, Edward Joseph MENARD, Mark A. LOWN, Jason Thomas WILSON, Yanan HUANG
  • Patent number: 11037464
    Abstract: The systems and methods disclosed herein are directed to robotically controlling a medical device to utilize manual skills and techniques developed by surgeons. The system may comprise an emulator representing a medical device. The system may comprise at least one detector configured to track the emulator. The system may further comprise an imaging device configured to track the medical device. The system may be configured to move the medical device to reduce an alignment offset between the location of the emulator and the location of the medical device, to move the imaging device based on the translational movement of the emulator, and/or to move the medical device based on data indicative of an orientation of the emulator.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: June 15, 2021
    Assignee: Auris Health, Inc.
    Inventors: Michael Shyh-Yen Ho, David S. Mintz, Edward Joseph Menard, Mark A. Lown, Jason Tomas Wilson, Yanan Huang
  • Publication number: 20180025666
    Abstract: The systems and methods disclosed herein are directed to robotically controlling a medical device to utilize manual skills and techniques developed by surgeons. The system may comprise an emulator representing a medical device. The system may comprise at least one detector configured to track the emulator. The system may further comprise an imaging device configured to track the medical device. The system may be configured to move the medical device to reduce an alignment offset between the location of the emulator and the location of the medical device, to move the imaging device based on the translational movement of the emulator, and/or to move the medical device based on data indicative of an orientation of the emulator.
    Type: Application
    Filed: July 21, 2017
    Publication date: January 25, 2018
    Inventors: Michael Shyh-Yen Ho, David S. Mintz, Edward Joseph Menard, Mark A. Lown, Jason Tomas Wilson, Yanan Huang