Patents by Inventor Mark A. Mortellaro

Mark A. Mortellaro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041366
    Abstract: A sensor, system, and method for detecting and correcting for an effect on an analyte indicator of an analyte sensor. The analyte indicator may have a first detectable property that varies in accordance with an analyte concentration and an effect on (e.g., degradation of) the analyte indicator. The analyte sensor may also include an interferent indicator having a second detectable property (e.g., absorption) that varies in accordance the effect on the analyte indicator. The analyte sensor may generate (i) an analyte measurement based on the first detectable property of the analyte indicator and (ii) an interferent measurement based on the second detectable property of the interferent indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and interferent measurements to calculate an analyte level.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 8, 2024
    Applicant: Senseonics, Incorporated
    Inventors: Andrew DeHennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, James Masciotti, Patricia Sanchez
  • Patent number: 11826143
    Abstract: A sensor (e.g., an optical sensor) that may be implanted within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid, blood, or intraperitoneal fluid) within the animal. The sensor may include a sensor housing, an analyte indicator covering at least a portion of the sensor housing, and a multiple metal protective system including multiple metals incorporated in and/or in close proximity to a surface of the analyte indicator that reduce deterioration of the analyte indicator.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: November 28, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Mark Mortellaro, Venkata Velvadapu, Tina Hyunjung Kim
  • Publication number: 20230103609
    Abstract: A sensor, system, and method for detecting and correcting for changes to an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an extent to which the analyte indicator has degraded. The analyte sensor may also include a degradation indicator configured to exhibit a second detectable property that varies in accordance with an extent to which the degradation indicator has degraded. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) a degradation measurement based on the second detectable property exhibited by the degradation indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and degradation measurements to calculate an analyte level.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 6, 2023
    Applicant: Senseonics, Incorporated
    Inventors: Andrew Dehennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, Tina HyunJung Kim, James Masciotti
  • Patent number: 11517230
    Abstract: A sensor, system, and method for detecting and correcting for changes to an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an extent to which the analyte indicator has degraded. The analyte sensor may also include a degradation indicator configured to exhibit a second detectable property that varies in accordance with an extent to which the degradation indicator has degraded. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) a degradation measurement based on the second detectable property exhibited by the degradation indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and degradation measurements to calculate an analyte level.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: December 6, 2022
    Assignee: Senseonics, Incorporated
    Inventors: Andrew Dehennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, Tina HyunJung Kim, James Masciotti
  • Publication number: 20220287597
    Abstract: A sensor, system, and method for detecting and correcting for an effect on an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an effect on (e.g., degradation of) the analyte indicator. The analyte sensor may also include an interferent indicator configured to exhibit a second detectable property (e.g., absorption) that varies in accordance the effect on the analyte indicator. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) an interferent measurement based on the second detectable property exhibited by the interferent indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and interferent measurements to calculate an analyte level.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 15, 2022
    Applicant: Senseonics, Incorporated
    Inventors: Andrew DeHennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, James Masciotti, Patricia Sanchez
  • Patent number: 11109779
    Abstract: A sensor that may be used to detect the presence, amount, and/or concentration of an analyte in a medium within an animal. The sensor may include a sensor housing, an indicator element embedded within and/or covering at least a portion of the sensor housing, and a membrane over the indicator element. The sensor may include one or more of a first coating on an inner surface of the membrane, a second coating on an outer surface of the membrane, and a layer on the outside of the indicator element. One or more of the first coating, second coating, and layer may reduce deterioration of the indicator element by catalyzing degradation of reactive oxygen species (ROS). The one or more coatings on the membrane may increase the light blocking capability of the membrane, which may improve the accuracy of the sensor.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: September 7, 2021
    Assignee: Senseonics, Incorporated
    Inventors: Jeremy Emken, Philip Huffstetler, Todd Whitehurst, Masika Hinds, Mark Mortellaro, Abhi Chavan, Bryan Hays
  • Publication number: 20210140888
    Abstract: A sensor (e.g., an optical sensor) that may be implanted within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid, blood, or intraperitoneal fluid) within the animal. The sensor may include a sensor substrate, electrode or housing, an analyte indicator covering at least a portion of the sensor, and one or more probes that identify degradative species in an environment of the sensor.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 13, 2021
    Applicant: Senseonics, Incorporated
    Inventors: Venkata Velvadapu, Mark Mortellaro
  • Publication number: 20210052202
    Abstract: A sensor, system, and method for detecting and correcting for changes to an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an extent to which the analyte indicator has degraded. The analyte sensor may also include a degradation indicator configured to exhibit a second detectable property that varies in accordance with an extent to which the degradation indicator has degraded. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) a degradation measurement based on the second detectable property exhibited by the degradation indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and degradation measurements to calculate an analyte level.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Applicant: Senseonics, Incorporated
    Inventors: Andrew Dehennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, Tina HyunJung Kim, James Masciotti
  • Patent number: 10827962
    Abstract: A sensor, system, and method for detecting and correcting for changes to an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an extent to which the analyte indicator has degraded. The analyte sensor may also include a degradation indicator configured to exhibit a second detectable property that varies in accordance with an extent to which the degradation indicator has degraded. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) a degradation measurement based on the second detectable property exhibited by the degradation indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and degradation measurements to calculate an analyte level.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: November 10, 2020
    Assignee: Senseonics, Incorporated
    Inventors: Andrew Dehennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, Tina HyunJung Kim, James Masciotti
  • Publication number: 20200178854
    Abstract: A sensor (e.g., an optical sensor) that may be implanted within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid, blood, or intraperitoneal fluid) within the animal. The sensor may include a sensor housing, an analyte indicator covering at least a portion of the sensor housing, and a multiple metal protective system including multiple metals incorporated in and/or in close proximity to a surface of the analyte indicator that reduce deterioration of the analyte indicator.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Applicant: Senseonics, Incorporated
    Inventors: Mark Mortellaro, Venkata Velvadapu, Tina HyunJung Kim
  • Publication number: 20190159708
    Abstract: An analyte sensor may include a sensor housing and an analyte indicator element embedded within and/or covering at least a portion of the sensor housing. The analyte indicator element may include a porous base having an interior surface and an exterior surface. The analyte indicator may include a catalytically active material disposed on at least one of the interior and exterior surfaces of the porous base, in which the catalytically active material catalyzes the degradation of reactive oxygen species. The analyte indicator may include a polymer unit polymerized onto or out of the porous base and an analyte sensing element attached to the polymer unit or copolymerized with the polymer unit.
    Type: Application
    Filed: November 28, 2018
    Publication date: May 30, 2019
    Applicant: Senseonics, Incorporated
    Inventors: Mark Mortellaro, Philip Huffstetler, Tina HyunJung Kim, Sanat Mohanty
  • Publication number: 20180353113
    Abstract: A sensor that may be used to detect the presence, amount, and/or concentration of an analyte in a medium within an animal. The sensor may include a sensor housing, an indicator element embedded within and/or covering at least a portion of the sensor housing, and a membrane over the indicator element. The sensor may include one or more of a first coating on an inner surface of the membrane, a second coating on an outer surface of the membrane, and a layer on the outside of the indicator element. One or more of the first coating, second coating, and layer may reduce deterioration of the indicator element by catalyzing degradation of reactive oxygen species (ROS). The one or more coatings on the membrane may increase the light blocking capability of the membrane, which may improve the accuracy of the sensor.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 13, 2018
    Applicant: Senseonics, Incorporated
    Inventors: Jeremy Emken, Philip Huffstetler, Todd Whitehurst, Masika Hinds, Mark Mortellaro, Abhi Chavan, Bryan Hays
  • Publication number: 20180303387
    Abstract: A sensor, system, and method for detecting and correcting for changes to an analyte indicator of an analyte sensor. The analyte indicator may be configured to exhibit a first detectable property that varies in accordance with an analyte concentration and an extent to which the analyte indicator has degraded. The analyte sensor may also include a degradation indicator configured to exhibit a second detectable property that varies in accordance with an extent to which the degradation indicator has degraded. The analyte sensor may generate (i) an analyte measurement based on the first detectable property exhibited by the analyte indicator and (ii) a degradation measurement based on the second detectable property exhibited by the degradation indicator. The analyte sensor may be part of a system that also includes a transceiver. The transceiver may use the analyte and degradation measurements to calculate an analyte level.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 25, 2018
    Applicant: Senseonics, Incorporated
    Inventors: Andrew Dehennis, Mark Mortellaro, Abhi Chavan, Venkata Velvadapu, Philip Huffstetler, Tina HyunJung Kim
  • Patent number: 8097725
    Abstract: The present invention relates to a chemical compound that has applications as a luminescent indicator dye, and to an optical sensor, typically employed for determination of near-neutral pH values of aqueous samples. The optical sensor has particular application in the pH determination of body liquids such as, for example, blood, plasma and serum.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 17, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Huarui He, Mark A. Mortellaro, Susanne T. Young
  • Publication number: 20070014726
    Abstract: In one aspect, the present invention relates to an implantable device for detecting the presence or concentration of an analyte in an aqueous environment in vivo. The device includes a macromolecule that comprises a copolymer of: a) one or more indicator component monomers which individually are not sufficiently water soluble to permit their use in an aqueous environment for detecting the presence or concentration of said analyte; b) one or more hydrophilic monomers; and c) one or more catalytic antioxidant monomers; such that the macromolecule is capable of detecting the presence or concentration of the analyte in an aqueous environment. The presence of the catalytic antioxidant reduces or prevents oxidative damage to the macromolecule.
    Type: Application
    Filed: July 17, 2006
    Publication date: January 18, 2007
    Applicant: Sensors for Medicine and Science
    Inventors: Kandace Merical, Arthur Colvin, Mark Mortellaro
  • Publication number: 20060121623
    Abstract: The present invention relates to a chemical compound that has applications as a luminescent indicator dye, and to an optical sensor, typically employed for determination of near-neutral pH values of aqueous samples. The optical sensor has particular application in the pH determination of body liquids such as, for example, blood, plasma and serum.
    Type: Application
    Filed: December 3, 2004
    Publication date: June 8, 2006
    Inventors: Huarui He, Mark Mortellaro, Susanne Young