Patents by Inventor Mark A. NAIVAR

Mark A. NAIVAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067920
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process. One or more feedback loops may be used to improve the particle manipulation process, based on data acquired during the first interrogation and/or during a downstream confirmation. Artificial intelligence techniques may be used to good effect.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 29, 2024
    Applicant: Owl biomedical, Inc.
    Inventors: Paul Hing, Nathaniel BAIR, Daryl GRUMMITT, John Harley, Mark NAIVAR, Matthew DICKERSON
  • Patent number: 11898954
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: February 13, 2024
    Assignee: Owl biomedical, Inc.
    Inventors: John S. Foster, Mark A. Naivar, Kevin E. Shields, Daryl W. Grummitt, Lily Li, Yareeve Zemel
  • Publication number: 20230136744
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process. One or more feedback loops may be used to improve the particle manipulation process, based on data acquired during the first interrogation and/or during a downstream confirmation. Artificial intelligence techniques may be used to good effect.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 4, 2023
    Inventors: Daryl GRUMMITT, Nathan Bair, Matthew Dickerson, John HARLEY, Mark NAIVAR
  • Publication number: 20230118941
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process. One or more feedback loops may be used to improve the particle manipulation process, based on data acquired during the first interrogation and/or during a downstream confirmation. Artificial intelligence techniques may be used to good effect.
    Type: Application
    Filed: November 2, 2022
    Publication date: April 20, 2023
    Inventors: Daryl GRUMMITT, John HARLEY, John FOSTER, Mark NAIVAR
  • Publication number: 20230124069
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and a plurality of laser interrogation regions. The laser interrogation regions may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, flap-type fluid valve, which sorts a target particle from non-target particles in a fluid stream. The laser interrogation stages are disposed in the microfabricated fluid channels at the input and output of the flap-type sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process. One or more feedback loops may be used to improve the particle manipulation process, based on data acquired during the first interrogation and/or during a downstream confirmation. Artificial intelligence techniques may be used to good effect.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 20, 2023
    Inventors: Daryl GRUMMITT, Mehran Hoonejani, Kevin SHIELDS, John HARLEY, Matthew MASON, Mark NAIVAR
  • Publication number: 20220260480
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Application
    Filed: April 8, 2022
    Publication date: August 18, 2022
    Inventors: John S. Foster, Mark A. Naivar, Kevin E. Shields, Daryl W. Grummitt, Timothy J. Wilt, Yareeve Zemel, Lily Li
  • Publication number: 20190360915
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. Deep learning techniques are brought to bear on the camera output to increase speed, accuracy and reliability.
    Type: Application
    Filed: June 22, 2019
    Publication date: November 28, 2019
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Mark A. NAIVAR, Kevin E. SHIELDS, Daryl W. GRUMMITT, Lily LI, Daryl W. GRUMMITT, Yareeve ZEMEL
  • Patent number: 10379030
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 13, 2019
    Assignee: Owl biomedical, Inc.
    Inventors: John S Foster, Kevin E. Shields, Mehran R. Hoonejani, Mark A. Naivar, Yareeve Zemel
  • Patent number: 10132739
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. In the event that the microfabricated particle manipulation device malfunctions as a result of a particle of debris becoming lodged in the microfabricated particle manipulation device, the system may invoke a recovery algorithm, that includes vibrating the microfabricated particle manipulation device using a pulse train at a frequency near its mechanical resonance.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 20, 2018
    Assignee: Owl biomedical, Inc.
    Inventors: John Stuart Foster, Kevin Eugene Shields, Mark Naivar, Mehran Rajaian Hoonejani
  • Patent number: 9632030
    Abstract: A method for determining fluorescent lifetime of a fluorescent particle in a flow cytometer comprising calculating a point on a digitized scatter waveform and a corresponding point on a digitized fluorescence waveform using the same method and calculating the time delay if any between the calculated point on the digitized scatter waveform and the calculated point on the fluorescent waveform to determine the fluorescent lifetime of the fluorescent particle with digitized data collected from a flow cytometer having an unmodulated light source.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 25, 2017
    Assignee: Arrowhead Center, Inc.
    Inventors: Jessica P. Houston, Mark A. Naivar
  • Publication number: 20160377526
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. In the event that the microfabricated particle manipulation device malfunctions as a result of a particle of debris becoming lodged in the microfabricated particle manipulation device, the system may invoke a recovery algorithm, that includes vibrating the microfabricated particle manipulation device using a pulse train at a frequency near its mechanical resonance.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 29, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John Stuart FOSTER, Kevin Eugene SHIELDS, Mark NAIVAR, Mehran Rajaian Hoonejani
  • Publication number: 20160377525
    Abstract: A MEMS-based particle manipulation system which uses a particle manipulation stage and optical confirmation of the manipulation. The optical confirmation may be camera-based, and may be used to assess the effectiveness or accuracy of the particle manipulation stage. In one exemplary embodiment, the particle manipulation stage is a microfabricated, fluid valve, which sorts a target particle from non-target particles in a fluid stream. The optical confirmation stage is disposed in the microfabricated fluid channels at the input and output of the microfabricated sorting valve. The laser interrogation regions may be used to assess the effectiveness or accuracy of the sorting, and to control or adjust sort parameters during the sorting process.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 29, 2016
    Applicant: Owl biomedical, Inc.
    Inventors: John S. FOSTER, Kevin E. Shields, Mehran R. Hoonejani, Mark A. NAIVAR, Yareeve ZEMEL