Patents by Inventor Mark A. Rampy

Mark A. Rampy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7232667
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: June 19, 2007
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Joachim R. Gruber, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Patrick J. Dillon, Reiner L. Gentz, Pablo Jimenez
  • Patent number: 6916786
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: July 12, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Patent number: 6903072
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: June 7, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20050037966
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 17, 2005
    Applicant: Human Genome Sciences, Inc.
    Inventors: Steven Ruben, Pablo Jimenez, Roxanne Duan, Mark Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul Moore, Timothy Coleman, Joachim Gruber, Patrick Dillon, Reiner Gentz
  • Publication number: 20040224387
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: December 12, 2003
    Publication date: November 11, 2004
    Applicant: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Patent number: 6693077
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: February 17, 2004
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian NI, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20030186904
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: January 4, 2002
    Publication date: October 2, 2003
    Applicant: HUMAN GENOME SCIENCES, INC.
    Inventors: Steven M. Ruben, Pablo Jimenez, Roxanne D. Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Patent number: 6599879
    Abstract: The present invention relates to the administration of Keratinocyte Growth Factor-2 (KGF-2) to stimulate proliferation of platelets and to increase levels of fibrinogen, albumin, globulin and total serum protein. Further, the present invention relates to administering KGF-2 to protect or treat the bladder and prostate. Moreover, the present invention relates to administering KGF-2 to stimulate growth of nasal, oral, and esophageal mucosa, lacrimal glands, salivary glands and Goblet cells.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: July 29, 2003
    Assignee: Human Genome Sciences, Inc.
    Inventors: Pablo Jimenez, Mark A. Rampy, Donna Mendrick, Deborah Russell, Arthur Louie
  • Publication number: 20030129687
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: February 15, 2002
    Publication date: July 10, 2003
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz
  • Publication number: 20030077695
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as “KGF-2” also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Application
    Filed: July 1, 1999
    Publication date: April 24, 2003
    Applicant: HUMAN GENOME SCIENCES, INC.
    Inventors: STEVEN M. RUBEN, PABLO JIMENEZ, D. ROXANNE DUAN, MARK A. RAMPY, DONNA MENDRICK, JUN ZHANG, JIAN NI, PAUL A. MOORE, TIMOTHY A. COLEMAN, JOACHIM R. GRUBER, PATRICK J. DILLON, REINER L. GENTZ
  • Patent number: 6417384
    Abstract: The present invention provides improved radioiodinated phospholipid ether analogs which demonstrate significant tumor avidity and longer plasma half-life than shorter-chain analogs. The radioiodinated phospholipid ether analogs of the present invention provide superior imaging and visualization of neoplastic lesions and tumor-specific cytotoxic cancer therapy.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: July 9, 2002
    Assignee: The Regents of the University of Michigan
    Inventors: Raymond E. Counsell, Marc A. Longino, Anatoly N. Pinchuk, Mark A. Rampy, Jamey P. Weichert
  • Publication number: 20020065429
    Abstract: The present invention provides improved radioiodinated phospholipid ether analogs which demonstrate significant tumor avidity and longer plasma half-life than shorter-chain analogs. The radioiodinated phospholipid ether analogs of the present invention provide superior imaging and visualization of neoplastic lesions and tumor-specific cytotoxic cancer therapy.
    Type: Application
    Filed: July 3, 2001
    Publication date: May 30, 2002
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Raymond E. Counsell, Marc A. Longino, Anatoly N. Pinchuk, Mark A. Rampy, Jamey P. Weichert
  • Patent number: 6255519
    Abstract: Improved radioiodinated phospholipid ether analogs are described which exhibit significant tumor avidity and longer plasma half-life relative to shorter chain analogs. Use of these compounds results in superior imaging and visualization of neoplastic lesions and tumor-specific cytotoxic cancer therapy.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: July 3, 2001
    Assignee: Regents of the University of Michigan
    Inventors: Raymond E. Counsell, Marc A. Longino, Anatoly N. Pinchuk, Mark A. Rampy, Jamey P. Weichert
  • Patent number: 6077692
    Abstract: This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. More particularly, the polypeptide of the present invention is a Keratinocyte Growth Factor, sometimes hereinafter referred to as "KGF-2" also formerly known as Fibroblast Growth Factor 12 (FGF-12). This invention further relates to the therapeutic use of KGF-2 to promote or accelerate wound healing. This invention also relates to novel mutant forms of KGF-2 that show enhanced activity, increased stability, higher yield or better solubility.
    Type: Grant
    Filed: February 13, 1998
    Date of Patent: June 20, 2000
    Assignee: Human Genome Sciences, Inc.
    Inventors: Steven M. Ruben, Pablo Jimenez, D. Roxanne Duan, Mark A. Rampy, Donna Mendrick, Jun Zhang, Jian Ni, Paul A. Moore, Timothy A. Coleman, Joachim R. Gruber, Patrick J. Dillon, Reiner L. Gentz