Patents by Inventor Mark A. Roehrig

Mark A. Roehrig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100073936
    Abstract: A flexible barrier assembly having a flexible visible light-transmissive substrate having a Tg greater than or equal to that of heat-stabilized polyethylene terephthalate (“HSPET”) overcoated with a first polymer layer having a Tg greater than or equal to that of HSPET and further overcoated with at least two visible light-transmissive inorganic barrier layers separated by at least one second polymer layer having a Tg greater than or equal to that of HSPET can be used to mount, cover, encapsulate or form moisture- and oxygen-sensitive articles such as organic light emitting devices and light valves.
    Type: Application
    Filed: November 13, 2009
    Publication date: March 25, 2010
    Inventors: Raghunath Padiyath, Mark A. Roehrig, Fred B. McCormick, Khanh T. Huynh
  • Publication number: 20090252894
    Abstract: A barrier assembly having a flexible or rigid substrate, an organic electronic device, and one or more layers of diamond-like film. The diamond-like film layers can be used to mount, cover, encapsulate or form composite assemblies for protection of moisture or oxygen sensitive articles such as organic light emitting diode devices, photovoltaic devices, organic transistors, and inorganic thin film transistors. The diamond-like film layers can also provide for edge sealing of adhesive bond lines in the assemblies.
    Type: Application
    Filed: June 11, 2009
    Publication date: October 8, 2009
    Inventors: Fred B. McCormick, Moses M. David, Mark A. Roehrig, Manoj Nirmal
  • Patent number: 7555934
    Abstract: A fluid permeation testing apparatus provides for filling a first cavity of a test cell with a test fluid and filling a second cavity of the test cell with a challenge fluid. The challenge fluid comprises at least one analyte useful for testing permeation of the challenge fluid through a test film that separates the first and second cavities. Samples of the test fluid in the first cavity are introduced to a mass spectrometer, such as in a pulsed manner, without substantially changing the total pressure in first cavity. Samples of the test fluid in the first cavity may be introduced to the mass spectrometer while maintaining substantially balanced total pressures in the first and second cavities.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: July 7, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Fred L. DeRoos, Mark E. Mueller, Mark A. Roehrig
  • Patent number: 7552620
    Abstract: Fluid permeation testing involves filling a first cavity of a test cell with a test fluid and filling a second cavity of the test cell with a challenge fluid. The challenge fluid comprises at least one analyte useful for testing permeation of the challenge fluid through a test film that separates the first and second cavities. Samples of the test fluid in the first cavity are introduced to a mass spectrometer, such as in a pulsed manner, without substantially changing the total pressure in first cavity. Samples of the test fluid in the first cavity may be introduced to the mass spectrometer while maintaining substantially balanced total pressures in the first and second cavities.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: June 30, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Fred L. DeRoos, Mark E. Mueller, Mark A. Roehrig
  • Publication number: 20090155458
    Abstract: A method for preparing a flexible film substrate with a low glass transition temperature can be used in the production of an article that retains dimensions and improves the surface smoothness after high temperature processing. The invention, for example, would enable low temperature films such as PET and PEN to be dimensionally stable and ultra flat at conditions commonly used in electronic processing which can typically exceed 200° C. More specifically, the methods enable the use of e.g. barrier films based on PET or PEN in OLED/PLED manufacturing.
    Type: Application
    Filed: February 7, 2007
    Publication date: June 18, 2009
    Inventors: Mark A. Roehrig, Yufeng R. Liu, Robert W. Peterson
  • Publication number: 20090142476
    Abstract: A flexible barrier assembly having a flexible visible light-transmissive substrate having a Tg greater than or equal to that of heat-stabilized polyethylene terephthalate (“HSPET”) overcoated with a first polymer layer having a Tg greater than or equal to that of HSPET and further overcoated with at least two visible light-transmissive inorganic barrier layers separated by at least one second polymer layer having a Tg greater than or equal to that of HSPET can be used to mount, cover, encapsulate or form moisture- and oxygen-sensitive articles such as organic light emitting devices and light valves.
    Type: Application
    Filed: January 30, 2009
    Publication date: June 4, 2009
    Inventors: Raghunath Padiyath, Mark A. Roehrig
  • Patent number: 7486019
    Abstract: A flexible barrier assembly having a flexible visible light-transmissive substrate having a Tg greater than or equal to that of heat-stabilized polyethylene terephthalate (“HSPET”) overcoated with a first polymer layer having a Tg greater than or equal to that of HSPET and further overcoated with at least two visible light-transmissive inorganic barrier layers separated by at least one second polymer layer having a Tg greater than or equal to that of HSPET can be used to mount, cover, encapsulate or form moisture- and oxygen-sensitive articles such as organic light emitting devices and light valves.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: February 3, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Raghunath Padiyath, Mark A. Roehrig
  • Publication number: 20090015757
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED lighting device such as solid state lighting devices or backlight units. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Publication number: 20090015142
    Abstract: A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: John E. Potts, Fred B. McCormick, Martin B. Wolk, Jun-Ying Zhang, Terry L. Smith, James M. Battiato, Ding Wang, William A. Tolbert, Mark A. Roehrig, Clark I. Bright
  • Publication number: 20080196664
    Abstract: A process for fabricating an amorphous diamond-like film layer for protection of a moisture or oxygen sensitive electronic device is described. The process includes forming a plasma from silicone oil, depositing an amorphous diamond-like film layer from the plasma, and combining the amorphous diamond-like film layer with a moisture or oxygen sensitive electronic device to form a protected electronic device. Articles including the amorphous diamond-like film layer on an organic electronic device are also disclosed.
    Type: Application
    Filed: February 21, 2007
    Publication date: August 21, 2008
    Inventors: Moses M. DAVID, Fred B. McCormick, Mark A. Roehrig
  • Publication number: 20080160185
    Abstract: A method for forming a color shifting film on a support, the film comprising a reflective stack disposed adjacent to the support and an image is disclosed. The reflective stack comprises an at least partially transparent spacer layer comprising a substituted acrylamide polymer disposed between a partially reflective first layer and a reflective second layer. The acrylamide layer has a thickness sufficient to produce an interference color.
    Type: Application
    Filed: September 19, 2007
    Publication date: July 3, 2008
    Inventors: James P. Endle, Christopher S. Lyons, Douglas S. Dunn, Robert J. Devoe, James M. Jonza, Stephen P. Maki, Albert I. Everaerts, George G.I. Moore, Robin E. Wright, Mark A. Roehrig, Olester Benson
  • Publication number: 20080060418
    Abstract: A fluid permeation testing apparatus provides for filling a first cavity of a test cell with a test fluid and filling a second cavity of the test cell with a challenge fluid. The challenge fluid comprises at least one analyte useful for testing permeation of the challenge fluid through a test film that separates the first and second cavities. Samples of the test fluid in the first cavity are introduced to a mass spectrometer, such as in a pulsed manner, without substantially changing the total pressure in first cavity. Samples of the test fluid in the first cavity may be introduced to the mass spectrometer while maintaining substantially balanced total pressures in the first and second cavities.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 13, 2008
    Inventors: Fred L. DeRoos, Mark E. Mueller, Mark A. Roehrig
  • Publication number: 20080060417
    Abstract: Fluid permeation testing involves filling a first cavity of a test cell with a test fluid and filling a second cavity of the test cell with a challenge fluid. The challenge fluid comprises at least one analyte useful for testing permeation of the challenge fluid through a test film that separates the first and second cavities. Samples of the test fluid in the first cavity are introduced to a mass spectrometer, such as in a pulsed manner, without substantially changing the total pressure in first cavity. Samples of the test fluid in the first cavity may be introduced to the mass spectrometer while maintaining substantially balanced total pressures in the first and second cavities.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 13, 2008
    Inventors: Fred L. DeRoos, Mark E. Mueller, Mark A. Roehrig
  • Publication number: 20080006819
    Abstract: A barrier assembly having a flexible or rigid substrate, an organic electronic device, and one or more layers of diamond-like film. The diamond-like film layers can be used to mount, cover, encapsulate or form composite assemblies for protection of moisture or oxygen sensitive articles such as organic light emitting diode devices, photovoltaic devices, organic transistors, and inorganic thin film transistors. The diamond-like film layers can also provide for edge sealing of adhesive bond lines in the assemblies.
    Type: Application
    Filed: June 19, 2006
    Publication date: January 10, 2008
    Inventors: Fred B. McCormick, Moses M. David, Mark A. Roehrig, Manoj Nirmal
  • Patent number: 7140741
    Abstract: Color shifting retroreflective articles can provide features such as decorative effects, evidence of tampering, security authentication or positional information. In some embodiments, the color shifting retroreflective article includes a layer of microspheres, and a reflective coating that is disposed in optical association with the layer of microspheres. The reflective coating includes a spacer layer disposed between a semitransparent first reflective layer and a second reflective layer. The first reflective layer includes a reflective layer disposed adjacent the layer of microspheres. At least one layer of the reflective coating includes a non-uniform thickness associated with each of a plurality of microspheres such that light incident on the article from a first direction is retroreflected at a first color and light incident on the article from a second direction is retroreflected at a second color visibly different from the first color.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Robert J. Fleming, Christopher S. Lyons, Joseph M. McGrath, Jesus Ramos, Mark A. Roehrig, Clark I. Bright
  • Patent number: 7052772
    Abstract: The present invention provides a material for packaging electronic components. In one embodiment, the packaging material comprises (a) a puncture resistant film having opposed first and second major surfaces; (b) a substantially continuous metal free light transmissible layer disposed on the first surface of the puncture resistant film, wherein the light transmissible layer comprises at least one pair of polymer layer and transparent conductive oxide layer; and (c) a heat sealable layer disposed on the light transmissible layer or on the second surface of the puncture resistant film. Other embodiments are provided.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: May 30, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew C. Lottes, Mark A. Roehrig
  • Patent number: 7018713
    Abstract: A flexible barrier assembly having a flexible visible light-transmissive substrate having a Tg greater than or equal to that of heat-stabilized polyethylene terephthalate (“HSPET”) overcoated with a first polymer layer having a Tg greater than or equal to that of HSPET and further overcoated with at least two visible light-transmissive inorganic barrier layers separated by at least one second polymer layer having a Tg greater than or equal to that of HSPET can be used to mount, cover, encapsulate or form moisture- and oxygen-sensitive articles such as organic light emitting devices and light valves.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: March 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Raghunath Padiyath, Mark A. Roehrig
  • Publication number: 20060062937
    Abstract: A flexible barrier assembly having a flexible visible light-transmissive substrate having a Tg greater than or equal to that of heat-stabilized polyethylene terephthalate (“HSPET”) overcoated with a first polymer layer having a Tg greater than or equal to that of HSPET and further overcoated with at least two visible light-transmissive inorganic barrier layers separated by at least one second polymer layer having a Tg greater than or equal to that of HSPET can be used to mount, cover, encapsulate or form moisture- and oxygen-sensitive articles such as organic light emitting devices and light valves.
    Type: Application
    Filed: November 14, 2005
    Publication date: March 23, 2006
    Inventors: Raghunath Padiyath, Mark Roehrig
  • Publication number: 20050162742
    Abstract: Color shifting retroreflective articles can provide features such as decorative effects, evidence of tampering, security authentication or positional information. In some embodiments, the color shifting retroreflective article includes a layer of microspheres, and a reflective coating that is disposed in optical association with the layer of microspheres. The reflective coating includes a spacer layer disposed between a semitransparent first reflective layer and a second reflective layer. The first reflective layer includes a reflective layer disposed adjacent the layer of microspheres. At least one layer of the reflective coating includes a non-uniform thickness associated with each of a plurality of microspheres such that light incident on the article from a first direction is retroreflected at a first color and light incident on the article from a second direction is retroreflected at a second color visibly different from the first color.
    Type: Application
    Filed: December 28, 2004
    Publication date: July 28, 2005
    Inventors: Robert Fleming, Christopher Lyons, Joseph McGrath, Jesus Ramos, Mark Roehrig, Clark Bright
  • Publication number: 20050037218
    Abstract: The present invention provides a material for packaging electronic components. In one embodiment, the packaging material comprises (a) a puncture resistant film having opposed first and second major surfaces; (b) a substantially continuous metal free light transmissible layer disposed on the first surface of the puncture resistant film, wherein the light transmissible layer comprises at least one pair of polymer layer and transparent conductive oxide layer; and (c) a heat sealable layer disposed on the light transmissible layer or on the second surface of the puncture resistant film. Other embodiments are provided.
    Type: Application
    Filed: August 14, 2003
    Publication date: February 17, 2005
    Inventors: Andrew Lottes, Mark Roehrig