Patents by Inventor Mark A. Rosswurm
Mark A. Rosswurm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250146444Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: ApplicationFiled: January 8, 2025Publication date: May 8, 2025Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Publication number: 20250116236Abstract: A method for controlling a dual fuel engine system includes estimating a total indicated engine load, where the total indicated engine load is based on a sum of a measured engine power and a power loss estimate. The method further includes determining a total fueling amount based on an engine speed and the total indicated engine load, where the total fueling amount includes a gas fueling amount and a diesel fueling amount. The method also includes controlling the dual fuel engine system using the total fueling amount.Type: ApplicationFiled: December 16, 2024Publication date: April 10, 2025Applicant: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 12253036Abstract: A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.Type: GrantFiled: January 2, 2024Date of Patent: March 18, 2025Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 12221934Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: GrantFiled: November 17, 2023Date of Patent: February 11, 2025Assignee: Cummins Inc.Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Patent number: 12168962Abstract: A method for controlling a dual fuel engine system includes estimating a total indicated engine load, where the total indicated engine load is based on a sum of a measured engine power and a power loss estimate. The method further includes determining a total fueling amount based on an engine speed and the total indicated engine load, where the total fueling amount includes a gas fueling amount and a diesel fueling amount. The method also includes controlling the dual fuel engine system using the total fueling amount.Type: GrantFiled: September 14, 2022Date of Patent: December 17, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240392731Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: ApplicationFiled: August 5, 2024Publication date: November 28, 2024Applicant: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 12055105Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: GrantFiled: September 14, 2022Date of Patent: August 6, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240141842Abstract: A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.Type: ApplicationFiled: January 2, 2024Publication date: May 2, 2024Applicant: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240084747Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: ApplicationFiled: November 17, 2023Publication date: March 14, 2024Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Publication number: 20240084745Abstract: A method for controlling a dual fuel engine system includes estimating a total indicated engine load, where the total indicated engine load is based on a sum of a measured engine power and a power loss estimate. The method further includes determining a total fueling amount based on an engine speed and the total indicated engine load, where the total fueling amount includes a gas fueling amount and a diesel fueling amount. The method also includes controlling the dual fuel engine system using the total fueling amount.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Publication number: 20240084746Abstract: A method for controlling a dual fuel engine system includes determining a friction power loss amount of an internal combustion engine of the dual fuel engine system, where the friction power loss amount is based on an engine speed of the internal combustion engine and a friction torque estimate. The method also includes determining an accessory power loss amount of a power of the internal combustion engine, where the accessory power loss amount is based on the engine speed and an accessory torque estimate. The method further includes estimating a net engine power amount based on the accessory power loss amount and a brake power amount of the internal combustion engine, estimating an indicated diesel power, and estimating, based on the estimated net engine power, a first indicated engine power and a first gas power.Type: ApplicationFiled: September 14, 2022Publication date: March 14, 2024Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 11873772Abstract: A method for controlling a dual fuel engine system includes determining a gas flow target for an internal combustion engine of the dual fuel engine system, where the gas flow target is based on a gas power target of the internal combustion engine, a thermal efficiency estimate of the internal combustion engine, and a lower heating value (LHV) within the internal combustion engine. The method also includes adjusting the gas flow target based on at least one of a measured gas temperature or a measured gas injector pressure and determining at least one base gas injector command based on the adjusted gas flow target, a gas substitution rate estimate, and a gas substitution rate target. The method further includes determining, based on the at least one base gas injector command, a gas injector command for at least one engine bank.Type: GrantFiled: September 14, 2022Date of Patent: January 16, 2024Assignee: Cummins Power Generation Inc.Inventors: Travis Alva Anderson, Axel O. zur Loye, Mark A. Rosswurm, Paul Daniel Borisuk, Shashank Bishnoi, Matthew W. Isaacs, Jason A. Gore, Atin Tandon, Jamie Robert John Sleigh
-
Patent number: 11840971Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: GrantFiled: August 29, 2022Date of Patent: December 12, 2023Assignee: Cummins IncInventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Publication number: 20220412276Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: ApplicationFiled: August 29, 2022Publication date: December 29, 2022Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Patent number: 11441495Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fueling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fueling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: GrantFiled: September 24, 2020Date of Patent: September 13, 2022Assignee: Cummins Inc.Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Publication number: 20210017918Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fueling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fueling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: ApplicationFiled: September 24, 2020Publication date: January 21, 2021Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Patent number: 10815913Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: GrantFiled: May 3, 2017Date of Patent: October 27, 2020Assignee: Cummins Inc.Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Publication number: 20170234245Abstract: Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.Type: ApplicationFiled: May 3, 2017Publication date: August 17, 2017Inventors: C. Larry Bruner, Phanindra V. Garimella, Geomy George, Timothy P. Lutz, J. Steven Kolhouse, Edmund P. Hodzen, Robert Charles Borregard, Mark A. Rosswurm, Axel Otto zur Loye
-
Patent number: 9371789Abstract: This disclosure provides a system and method that eliminates the need for manually calibrating or adjusting a dual fuel internal combustion engine to compensate for variations in composition of a gaseous fuel or other variations, such as ambient or site conditions. The system and method functions by determining an engine load, determining an advantageous gaseous fuel substitution rate from the engine load and speed in addition to an actual gaseous fuel substitution rate, modifying the advantageous gaseous fuel substitution rate by a minimum liquid fuel flow rate, engine protection parameters, and oxidation catalyst protection parameters, and then determining an error term in response to the modified advantageous gaseous fuel substitution rate and the actual gaseous fuel substitution rate. The error term is used to adjust a gaseous fuel control valve.Type: GrantFiled: June 20, 2014Date of Patent: June 21, 2016Assignee: CUMMINS INC.Inventors: Mark A. Rosswurm, Axel O. zur Loye
-
Publication number: 20140373822Abstract: This disclosure provides a system and method that eliminates the need for manually calibrating or adjusting a dual fuel internal combustion engine to compensate for variations in composition of a gaseous fuel or other variations, such as ambient or site conditions. The system and method functions by determining an engine load, determining an advantageous gaseous fuel substitution rate from the engine load and speed in addition to an actual gaseous fuel substitution rate, modifying the advantageous gaseous fuel substitution rate by a minimum liquid fuel flow rate, engine protection parameters, and oxidation catalyst protection parameters, and then determining an error term in response to the modified advantageous gaseous fuel substitution rate and the actual gaseous fuel substitution rate. The error term is used to adjust a gaseous fuel control valve.Type: ApplicationFiled: June 20, 2014Publication date: December 25, 2014Inventors: Mark A. Rosswurm, Axel O. zur Loye