Patents by Inventor Mark A. Shost
Mark A. Shost has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11905899Abstract: A skip fire control system for an engine of a vehicle includes a set of sensors configured to measure a set of operating parameters of the engine corresponding to a volumetric efficiency of the engine, a set of sub-systems having a set of operational states that affect transitions between different firing patterns/fractions of the engine, and a controller configured to, based on the set of operating parameters and the set of operational states of the set of sub-systems, determine a best firing pattern/fraction by taking into account losses or penalties to transition at least some of the set of operational states of the set of sub-systems to obtain a target firing pattern/fraction, and control the engine based on the target firing pattern/fraction to maximize an efficiency of the engine.Type: GrantFiled: August 26, 2021Date of Patent: February 20, 2024Assignee: FCA US LLCInventors: Srihari Kalluri, Mark A Shost
-
Publication number: 20230069140Abstract: A skip fire control system for an engine of a vehicle includes a set of sensors configured to measure a set of operating parameters of the engine corresponding to a volumetric efficiency of the engine, a set of sub-systems having a set of operational states that affect transitions between different firing patterns/fractions of the engine, and a controller configured to, based on the set of operating parameters and the set of operational states of the set of sub-systems, determine a best firing pattern/fraction by taking into account losses or penalties to transition at least some of the set of operational states of the set of sub-systems to obtain a target firing pattern/fraction, and control the engine based on the target firing pattern/fraction to maximize an efficiency of the engine.Type: ApplicationFiled: August 26, 2021Publication date: March 2, 2023Inventors: Srihari Kalluri, Mark A Shost
-
Patent number: 10941722Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.Type: GrantFiled: February 7, 2019Date of Patent: March 9, 2021Assignees: Tula Technology, Inc., GM Global Technology Operations LLCInventors: Mark A. Shost, Louis J. Serrano, Steven E. Carlson, Vijay Srinivasan, Eric J. Defenderfer, Nitish J. Wagh, Randall S. Beikmann, Jinbiao Li, Xin Yuan, Li-Chun Chien
-
Patent number: 10808590Abstract: Improved systems and methods for dosing agent injection adaptation for a selective catalytic reduction (SCR) system of an engine of a vehicle involve an adaptation procedure that is generally divided into distinct phases based upon the requirement to obtain an accurate dosing adaptation. The phases themselves provide the specific functions of catalyst ammonia storage depletion, catalyst ammonia storage and NOx conversion stabilization, and adaptation value factor determination and verification.Type: GrantFiled: July 3, 2018Date of Patent: October 20, 2020Assignee: FCA US LLCInventors: Mark A Shost, John D Phillips, Cornelius Opris, Arpit Shukla
-
Patent number: 10662883Abstract: Internal combustion engine having cam actuated valves that can be controlled to facilitate the use of different air charge levels in different cylinders or sets of cylinders are described. In one aspect a first set of cylinders is operated in a skip fire manner in which the corresponding cylinders are deactivated during skipped working cycles. Cam actuated intake valves associated with a second set of cylinders are operated differently so that the air charge in the cylinders in the second set is different than the air charge in fired cylinders subject to the skip fire control. According to another aspect, an engine having cam actuated intake valves is operated in a dynamic firing level modulation mode. During the dynamic firing level modulation operation, the cam actuated intake valves are controlled in at least two different manners to such that different cylinder working cycles have different air charges.Type: GrantFiled: April 13, 2017Date of Patent: May 26, 2020Assignee: Tula Technology, Inc.Inventors: Mark A. Shost, Matthew A. Younkins
-
Patent number: 10634076Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.Type: GrantFiled: October 19, 2018Date of Patent: April 28, 2020Assignee: Tula Technology, Inc.Inventors: Louis J. Serrano, Vijay Srinivasan, Geoffrey Routledge, Mark A. Shost, Biswa R. Ghosh, Mark A. Wilcutts, Matthew A. Younkins, Ying Ren
-
Publication number: 20200011222Abstract: Improved systems and methods for dosing agent injection adaptation for a selective catalytic reduction (SCR) system of an engine of a vehicle involve an adaptation procedure that is generally divided into distinct phases based upon the requirement to obtain an accurate dosing adaptation. The phases themselves provide the specific functions of catalyst ammonia storage depletion, catalyst ammonia storage and NOx conversion stabilization, and adaptation value factor determination and verification.Type: ApplicationFiled: July 3, 2018Publication date: January 9, 2020Inventors: Mark A. Shost, John D. Phillips, Cornelius Opris, Arpit Shukla
-
Patent number: 10443518Abstract: An engine system for a vehicle includes an engine comprising X cylinders (X?4) and Y deactivation mechanisms (X/2<Y<X), each of the Y deactivation mechanisms being configured to deactivate a different one of the X cylinders and wherein the Y deactivation mechanisms are arranged an optimal Y of the X cylinders for a defined firing order of the X cylinders. The engine system further includes a controller configured to: determine a torque request for the engine, determine a set of potential firing fractions of the engine, each firing fraction representing a particular Z of the X cylinders being deactivated (0<Z?Y) based on the torque request, determine an optimal firing fraction of the set of potential firing fractions, based on the optimal firing fraction, command a corresponding Z of the Y deactivation mechanisms to deactivate the determined Z of the X cylinders, and command firing of a remainder the X cylinders.Type: GrantFiled: July 20, 2017Date of Patent: October 15, 2019Assignee: FCA US LLCInventor: Mark A Shost
-
Patent number: 10400691Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner. A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.Type: GrantFiled: February 12, 2018Date of Patent: September 3, 2019Assignee: Tula Technology, Inc.Inventors: Louis J. Serrano, Vijay Srinivasan, Geoffrey Routledge, Mark A. Shost, Biswa R. Ghosh, Mark A. Wilcutts, Matthew A. Younkins, Ying Ren
-
Publication number: 20190170074Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.Type: ApplicationFiled: February 7, 2019Publication date: June 6, 2019Inventors: Mark A. SHOST, Louis J. SERRANO, Steven E. CARLSON, Vijay SRINIVASAN, Eric J. DEFENDERFER, Nitish J. WAGH, Randall S. BEIKMANN, Jinbiao LI, Xin YUAN, Li-Chun CHIEN
-
Patent number: 10247121Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.Type: GrantFiled: March 4, 2015Date of Patent: April 2, 2019Assignees: Tula Technology, Inc., GM Global Technology Operations LLCInventors: Mark A. Shost, Louis J. Serrano, Steven E. Carlson, Vijay Srinivasan, Eric J. Defenderfer, Nitish J. Wagh, Randall S. Beikmann, Jinbiao Li, Xin Yuan, Li-Chun Chien
-
Patent number: 10233796Abstract: An internal combustion engine capable of cylinder deactivation or skip fire control in combination with variable valve lift control. One bank of cylinders can be deactivated while the air induction of the other bank of cylinders is regulated using variable valve lift control to increase engine efficiency. An internal combustion engine with two cylinder banks, where control of one cylinder bank using skip fire control can be operating at an appropriate firing fraction in combination with variable valve lift control on the other cylinder bank. A single bank of cylinders can be controlled in a skip fire manner in conjunction with variable valve lift control.Type: GrantFiled: May 6, 2015Date of Patent: March 19, 2019Assignee: Tula Technology, Inc.Inventors: Mark A. Shost, Matthew A. Younkins
-
Publication number: 20190055894Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.Type: ApplicationFiled: October 19, 2018Publication date: February 21, 2019Inventors: Louis J. SERRANO, Vijay SRINIVASAN, Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Mark A. WILCUTTS, Matthew A. YOUNKINS, Ying REN
-
Publication number: 20190024594Abstract: An engine system for a vehicle includes an engine comprising X cylinders (X?4) and Y deactivation mechanisms (X/2<Y<X), each of the Y deactivation mechanisms being configured to deactivate a different one of the X cylinders and wherein the Y deactivation mechanisms are arranged an optimal Y of the X cylinders for a defined firing order of the X cylinders. The engine system further includes a controller configured to: determine a torque request for the engine, determine a set of potential firing fractions of the engine, each firing fraction representing a particular Z of the X cylinders being deactivated (0<Z?Y) based on the torque request, determine an optimal firing fraction of the set of potential firing fractions, based on the optimal firing fraction, command a corresponding Z of the Y deactivation mechanisms to deactivate the determined Z of the X cylinders, and command firing of a remainder the X cylinders.Type: ApplicationFiled: July 20, 2017Publication date: January 24, 2019Inventor: Mark A. Shost
-
Patent number: 10012161Abstract: In one aspect, a method is described. An operational engine torque is calculated. The engine is operated in a skip fire manner to deliver the operational engine torque. A reference engine torque is calculated using a torque model. The torque model involves estimating torque at a working chamber level. The reference engine torque is compared to the calculated operational engine torque to assess the accuracy of the operational engine torque calculation. Various embodiments of the present invention involve software, devices, systems and engine controllers that are related to one or more of the above operations.Type: GrantFiled: June 2, 2016Date of Patent: July 3, 2018Assignees: Tula Technology, Inc., FCA US LLCInventors: Mark A. Shost, Ihab S. Soliman, James J. Daley
-
Publication number: 20180163650Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner. A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.Type: ApplicationFiled: February 12, 2018Publication date: June 14, 2018Inventors: Louis J. SERRANO, Vijay SRINIVASAN, Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Mark A. WILCUTTS, Matthew A. YOUNKINS
-
Publication number: 20170350331Abstract: In one aspect, a method is described. An operational engine torque is calculated. The engine is operated in a skip fire manner to deliver the operational engine torque. A reference engine torque is calculated using a torque model. The torque model involves estimating torque at a working chamber level. The reference engine torque is compared to the calculated operational engine torque to assess the accuracy of the operational engine torque calculation. Various embodiments of the present invention involve software, devices, systems and engine controllers that are related to one or more of the above operations.Type: ApplicationFiled: June 2, 2016Publication date: December 7, 2017Inventors: Mark A. SHOST, Ihab S. SOLIMAN, James J. DALEY
-
Patent number: 9725082Abstract: A variety of methods and arrangements for implementing a start/stop feature in a skip fire engine control system are described. In one aspect, the implementation of the start/stop feature involves automatically turning off an internal combustion engine under selected circumstances during a drive cycle. A determination is made that the engine should be restarted. During the engine startup period, the engine is operated in a skip fire manner such that a desired engine speed is reached.Type: GrantFiled: June 18, 2015Date of Patent: August 8, 2017Assignees: Tula Technology, Inc., FCA US LLCInventors: Ihab S. Soliman, Mark A. Shost, Truc Trung Le, Joseph B. Adams
-
Publication number: 20170218866Abstract: Internal combustion engine having cam actuated valves that can be controlled to facilitate the use of different air charge levels in different cylinders or sets of cylinders are described. In one aspect a first set of cylinders is operated in a skip fire manner in which the corresponding cylinders are deactivated during skipped working cycles. Cam actuated intake valves associated with a second set of cylinders are operated differently so that the air charge in the cylinders in the second set is different than the air charge in fired cylinders subject to the skip fire control. According to another aspect, an engine having cam actuated intake valves is operated in a dynamic firing level modulation mode. During the dynamic firing level modulation operation, the cam actuated intake valves are controlled in at least two different manners to such that different cylinder working cycles have different air charges.Type: ApplicationFiled: April 13, 2017Publication date: August 3, 2017Inventors: Mark A. SHOST, Matthew A. YOUNKINS
-
Patent number: 9581098Abstract: Methods and devices are described for performing engine diagnostics during skip fire operation of an engine while a vehicle is being driven. Knowledge of the firing sequence is used to determine appropriate times to conduct selected diagnostics and/or to help better interpret sensor inputs or diagnostic results. In one aspect, selected diagnostics are executed when a single cylinder is fired a plurality of times in isolation relative to a sensor used in the diagnosis. In another aspect, selected diagnostics are conducted while the engine is operated using a firing sequence that insures that no cylinders in a first cylinder bank are fired for a plurality of engine cycles while cylinders in a second bank are at least sometimes fired. The described tests can be conducted opportunistically, when conditions are appropriate, or specific firing sequences can be commanded to achieve the desired isolation or skipping of one or more selected cylinders.Type: GrantFiled: November 12, 2015Date of Patent: February 28, 2017Assignee: Tula Technology, Inc.Inventors: Shikui Kevin Chen, Xin Yuan, Joshua P. Switkes, Steven E. Carlson, Mark A. Shost