Patents by Inventor Mark A. Welch

Mark A. Welch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10346221
    Abstract: A method includes a processor for determining a life cycle of a first performance of a task flow for a telecommunication service order, determining that a performance of a first task within the first performance of the task flow has exceeded a threshold processing time, and determining that there is a problem with a first centralized system component in response to determining that the performance of the first task within the first performance of the task flow has exceeded the threshold processing time. The method may further include identifying the centralized system component for servicing when it is determined that there is a problem with the centralized system component.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: July 9, 2019
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Arun Kandappan, Joseph Schutte, Mark Welch, Kevin White
  • Patent number: 10344285
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: July 9, 2019
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20190169622
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 6, 2019
    Applicant: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Patent number: 10233454
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: March 19, 2019
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20190010505
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 10, 2019
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20180258436
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 13, 2018
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20180112244
    Abstract: Disclosed herein are three geneses of proteins herein established to exhibit a fructose to allulose epimerase activity that are useful for production of allulose from fructose at high temperatures and at low pH in the range of 4.5 to 6.0. Two of the three geneses descend phylogenetically from a common ancestral protein defined herein, and these geneses are distinguished from each other by different parental descendant proteins also defined herein. The proteins with high levels of sequence identity to the parental nodes defining from these two geneses generally exhibit higher levels of specific fructose to glucose epimerase activity than prior known fructose to allulose epimerases and exhibit such activity at low pH. A third genus is not defined by phylogenetic origin except by not descending from the same ancestor as the first two geneses but generally exhibit similar levels of fructose to allulose epimerase activities as prior art epimerases described to be useful for fructose to allulose conversion.
    Type: Application
    Filed: May 20, 2016
    Publication date: April 26, 2018
    Inventors: Padmesh Venkitasubramanian, William Schroeder, Mark Welch, Sridhar Govindarajan
  • Publication number: 20170235597
    Abstract: A method includes a processor for determining a life cycle of a first performance of a task flow for a telecommunication service order, determining that a performance of a first task within the first performance of the task flow has exceeded a threshold processing time, and determining that there is a problem with a first centralized system component in response to determining that the performance of the first task within the first performance of the task flow has exceeded the threshold processing time. The method may further include identifying the centralized system component for servicing when it is determined that there is a problem with the centralized system component.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Arun Kandappan, Joseph Schutte, Mark Welch, Kevin White
  • Publication number: 20170121718
    Abstract: The present disclosure provides nucleic acids and vectors for use with methanotrophic bacteria. Related host cells and methods for using such nucleic acids and vectors for expressing polypeptides or other genetic manipulation of methanotrophic bacteria are also provided. In one aspect, the present disclosure is directed to a non-naturally occurring nucleic acid molecule, comprising (1) a promoter that is functional in a methanotrophic bacterium, and (2) a native or altered methanol dehydrogenase (MDH) ribosomal binding sequence, provided that when the promoter is an MDH gene promoter, the nucleic acid comprises an altered MDH ribosomal binding sequence.
    Type: Application
    Filed: June 18, 2015
    Publication date: May 4, 2017
    Inventors: Renee M. Saville, Joshua Silverman, Jeremy Minshull, Jon Edward Ness, Effendi Leonard, Jana Stumpe, Mark Welch
  • Patent number: 9639394
    Abstract: A method includes a processor for determining a life cycle of a first performance of a task flow for a telecommunication service order, determining that a performance of a first task within the first performance of the task flow has exceeded a threshold processing time, and determining that there is a problem with a first centralized system component in response to determining that the performance of the first task within the first performance of the task flow has exceeded the threshold processing time. The method may further include identifying the centralized system component for servicing when it is determined that there is a problem with the centralized system component.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 2, 2017
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Arun Kandappan, Joseph Schutte, Mark Welch, Kevin White
  • Publication number: 20170101647
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 13, 2017
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20170101646
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 13, 2017
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20170101629
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 13, 2017
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Publication number: 20170101630
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, gene expression, bioprocessing, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 13, 2017
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Maggie Lee, Kate Caves, Jon Ness
  • Patent number: 9580697
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes, and methods for constructing such vectors. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, but not limited to, gene expression, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: February 28, 2017
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Kate Caves
  • Patent number: 9574209
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes, and methods for constructing such vectors. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, but not limited to, gene expression, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 21, 2017
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Kate Caves
  • Publication number: 20170017517
    Abstract: A method includes a processor for determining a life cycle of a first performance of a task flow for a telecommunication service order, determining that a performance of a first task within the first performance of the task flow has exceeded a threshold processing time, and determining that there is a problem with a first centralized system component in response to determining that the performance of the first task within the first performance of the task flow has exceeded the threshold processing time. The method may further include identifying the centralized system component for servicing when it is determined that there is a problem with the centralized system component.
    Type: Application
    Filed: July 13, 2015
    Publication date: January 19, 2017
    Inventors: Arun Kandappan, Joseph Schutte, Mark Welch, Kevin White
  • Patent number: 9534234
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes, and methods for constructing such vectors. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, but not limited to, gene expression, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: January 3, 2017
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Kate Caves
  • Publication number: 20160340691
    Abstract: The present invention provides polynucleotide vectors for high expression of heterologous genes, and methods for constructing such vectors. Some vectors further comprise novel transposons and transposases that further improve expression. Further disclosed are vectors that can be used in a gene transfer system for stably introducing nucleic acids into the DNA of a cell. The gene transfer systems can be used in methods, for example, but not limited to, gene expression, gene therapy, insertional mutagenesis, or gene discovery.
    Type: Application
    Filed: August 2, 2016
    Publication date: November 24, 2016
    Inventors: Jeremy Minshull, Mark Welch, Sridhar Govindrajan, Kate Caves
  • Patent number: D773048
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: November 29, 2016
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Arup Roy, Mark Welch, Sanjay Gaikwad, Christopher A Wilson, Solene Bourgeois, Philip C Halbert