Patents by Inventor Mark A. WILCUTTS

Mark A. WILCUTTS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220120230
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 21, 2022
    Inventors: Mark A. WILCUTTS, Xi LUO, Anastasios ARVANITIS
  • Publication number: 20210396189
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Publication number: 20210199061
    Abstract: Various methods and arrangements for improving fuel economy and noise, vibration, and harshness (NVH) in a skip fire controlled engine are described. An engine controller dynamically selects a gas spring type for a skipped firing opportunity. Determination of the skip/fire pattern and gas spring type may be made on a firing opportunity by firing opportunity basis.
    Type: Application
    Filed: February 24, 2021
    Publication date: July 1, 2021
    Inventors: Jerry F. FUSCHETTO, Matthew A. YOUNKINS, Ihab S. SOLIMAN, Mark A. WILCUTTS, Steven E. CARLSON, Louis J. SERRANO
  • Publication number: 20210071605
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: October 6, 2020
    Publication date: March 11, 2021
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Publication number: 20200318566
    Abstract: An internal combustion engine operates so that it delivers zero or negative torque. The engine operates in either a deceleration cylinder cut off (DCCO) mode or skip cylinder compression braking mode. In the skip cylinder compression braking mode, selected working cycles of selected working chambers are operated in a compression release braking mode. Accordingly, individual working chambers are sometimes not fired and sometimes operated in the compression release braking mode while the engine is operating in the skip cylinder compression braking mode.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 8, 2020
    Inventors: Steven E. CARLSON, Louis J. SERRANO, Mark A. WILCUTTS, Vijay SRINIVASAN
  • Publication number: 20200158044
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Masaki NAGASHIMA, Mohammad R. PIRJABERI, Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mark A. WILCUTTS
  • Publication number: 20200040788
    Abstract: A variety of methods and arrangements for controlling the exhaust gas temperature of a lean burn, skip fire controlled internal combustion engine are described. In one aspect, an engine controller includes an aftertreatment system monitor and a firing timing determination unit. The aftertreatment monitor obtains data relating to a temperature of one or more aftertreatment elements, such as a catalytic converter. Based at least partly on this data, the firing timing determination unit generates a firing sequence for operating the engine in a skip fire manner such that the temperature of the aftertreatment element is controlled within its effective operating range.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 6, 2020
    Inventors: Matthew A. YOUNKINS, Shikui Kevin CHEN, Mark A. WILCUTTS
  • Publication number: 20190178135
    Abstract: A variety of methods and arrangements for controlling the exhaust gas temperature of a lean burn, skip fire controlled internal combustion engine are described. In one aspect, an engine controller includes an aftertreatment system monitor and a firing timing determination unit. The aftertreatment monitor obtains data relating to a temperature of one or more aftertreatment elements, such as a catalytic converter. Based at least partly on this data, the firing timing determination unit generates a firing sequence for operating the engine in a skip fire manner such that the temperature of the aftertreatment element is controlled within its effective operating range.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Inventors: Matthew A. YOUNKINS, Shikui Kevin CHEN, Mark A. WILCUTTS
  • Publication number: 20190145329
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Publication number: 20190055894
    Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 21, 2019
    Inventors: Louis J. SERRANO, Vijay SRINIVASAN, Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Mark A. WILCUTTS, Matthew A. YOUNKINS, Ying REN
  • Publication number: 20180202379
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a dynamic firing level modulation manner. A smoothing torque is determined by adaptive control that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Masaki NAGASHIMA, Mohammad R. PIRJABERI, Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mark A. WILCUTTS
  • Publication number: 20180163650
    Abstract: Systems and methods for reducing noise or vibration generated by an internal combustion engine are described. An engine controller is arranged to operate the working chambers of the engine in a cylinder output level modulation manner. A noise/vibration reduction unit actively control of a device that is not a part of the powertrain. The device is controlled in a feed forward manner to alter an NVH characteristic of the vehicle in a desired manner based at least in part on a characteristic of the cylinder output level modulation operation of the engine.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: Louis J. SERRANO, Vijay SRINIVASAN, Geoffrey ROUTLEDGE, Mark A. SHOST, Biswa R. GHOSH, Mark A. WILCUTTS, Matthew A. YOUNKINS
  • Publication number: 20170370310
    Abstract: Methods, devices, estimators, controllers and algorithms are described for estimating working chamber air charge during engine operations. The described approaches and devices are well suited for use in dynamic firing level modulation controlled engines. Manifold pressure is estimated for a time corresponding to an induction event associated with a selected working cycle. The manifold pressure estimate accounts for impacts from one or more intervening potential induction events that will occur between the time that the manifold pressure is estimated and the time that the induction event associated with the selected working cycle occurs. The estimated manifold pressure is used in the estimation of the air charge for the selected working cycle. The described approach may be used to individually calculate the air charge for each induction event at any time that the engine is operating in a mode that can benefit from the individual cylinder air charge estimations.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 28, 2017
    Inventors: Allan J. KOTWICKI, Joel D. VAN ESS, Mark A. WILCUTTS
  • Publication number: 20170130630
    Abstract: A variety of methods and arrangements for controlling the exhaust gas temperature of a lean burn, skip fire controlled internal combustion engine are described. In one aspect, an engine controller includes an aftertreatment system monitor and a firing timing determination unit. The aftertreatment monitor obtains data relating to a temperature of one or more aftertreatment elements, such as a catalytic converter. Based at least partly on this data, the firing timing determination unit generates a firing sequence for operating the engine in a skip fire manner such that the temperature of the aftertreatment element is controlled within its effective operating range.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 11, 2017
    Inventors: Matthew A. YOUNKINS, Shikui Kevin CHEN, Mark A. WILCUTTS
  • Publication number: 20170122237
    Abstract: A variety of methods and arrangements for improving the fuel efficiency of internal combustion engines based on skip fire operation of the engine are described. In one aspect the skip fire decisions are made on a working cycle by working cycle basis. During selected skipped working cycles, the corresponding cylinders are deactivated such that air is not pumped through the cylinder during the selected skipped working cycles. In some implementations, the cylinders are deactivated by holding associated intake and exhaust valves closed such that an air charge is not present in the working chamber during the selected skipped working cycles.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 4, 2017
    Inventors: Adya S. TRIPATHI, Chester J. SILVESTRI, Christopher W. CHANDLER, Christopher C. HAND, Joshua P. SWITKES, Mark A. WILCUTTS, Matthew A. YOUNKINS
  • Publication number: 20170051689
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: November 1, 2016
    Publication date: February 23, 2017
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Publication number: 20160377007
    Abstract: Various methods and arrangements for determining a combustion control parameter for a working chamber in an engine are described. In one aspect, an engine controller includes a firing counter that stores a firing history for the working chamber. A combustion control module is used to determine a combustion control parameter, which is used to help manage combustion in the working chamber. The combustion control parameter is determined based at least in part on the firing history.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 29, 2016
    Inventors: Mark A. WILCUTTS, Xin YUAN, Joshua P. SWITKES, Li-Chun CHIEN, Steven E. CARLSON, Christopher W. CHANDLER, Christopher C. Hand, Matthew A. YOUNKINS, Adya S. Tripathi
  • Publication number: 20160201586
    Abstract: A variety of methods and arrangements for reducing noise, vibration and harshness (NVH) in a skip fire engine control system are described. In one aspect, a firing sequence is used to operate the engine in a skip fire manner. A smoothing torque is determined that is applied to a powertrain by an energy storage/release device. The smoothing torque is arranged to at least partially cancel out variation in torque generated by the skip fire firing sequence. Various methods, powertrain controllers, arrangements and computer software related to the above operations are also described.
    Type: Application
    Filed: January 11, 2016
    Publication date: July 14, 2016
    Inventors: Louis J. SERRANO, Xin YUAN, John W. PARSELS, Mohammad R. PIRJABERI, Mark A. WILCUTTS, Masaki NAGASHIMA
  • Publication number: 20160159364
    Abstract: A variety of methods and devices for mitigating power train vibration during skip fire operation of an engine are described. In one aspect, the slip of a drive train component (such as a torque converter clutch) is based at least in part upon a skip fire characteristic (such as firing fraction, selected firing sequence/pattern, etc.) during skip fire operation of an engine. The modulation of the drive train component slip can also be varied as a function of one or more engine operating parameters such as engine speed and/or a parameter indicative of the output of fired cylinders (such as mass air charge).
    Type: Application
    Filed: February 17, 2016
    Publication date: June 9, 2016
    Inventors: Mark A. WILCUTTS, Xin YUAN, Joshua P. SWITKES, Steven E. CARLSON, John F. IMPEDUGLIA, John W. PARSELS
  • Publication number: 20160146121
    Abstract: Methods and arrangements for transitioning an engine between a deceleration cylinder cutoff (DCCO) state and an operational state are described. In one aspect, transitions from DCCO begin with reactivating cylinders to pump air to reduce the pressure in the intake manifold prior to firing any cylinders. In another aspect, transitions from DCCO, involve the use of an air pumping skip fire operational mode. After the manifold pressure has been reduced, the engine may transition to either a cylinder deactivation skip fire operational mode or other appropriate operational mode. In yet another aspect a method of transitioning into DCCO using a skip fire approach is described. In this aspect, the fraction of the working cycles that are fired is gradually reduced to a threshold firing fraction. All of the working chambers are then deactivated after reaching the threshold firing fraction.
    Type: Application
    Filed: January 28, 2016
    Publication date: May 26, 2016
    Inventors: Steven E. CARLSON, Xin YUAN, Siamak HASHEMI, Vijay SRINIVASAN, Srihari KALLURI, Andrew W. PHILLIPS, Mark A. WILCUTTS, Louis J. SERRANO, Shikui Kevin CHEN