Patents by Inventor Mark A. Yoshimoto

Mark A. Yoshimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367376
    Abstract: An electronic device includes a die, one or more power stages, and one or more sensors electrically coupled to the one or more stages and to determine data associated with a temperature of the die. The electronic device includes one or more off-die power stages external to the die and processing circuitry configured to cause the one or more off-die power stages to activate based on the data indicating that the temperature is greater than a temperature threshold.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Inventors: Mark A Yoshimoto, Mark D Mesaros
  • Publication number: 20230369972
    Abstract: A power management circuit included in a computer system regulates a voltage level of a power supply node used by other circuits in the computer system. The power management circuit includes a control circuit and multiple phase circuits coupled to the regulated power supply node via corresponding inductors. The control circuit selectively activates particular ones of the multiple phase circuits allowing them source respective currents to the regulated power supply node. The control circuit also selectively activates particular ones of other phase circuits that are external to the power management circuit and coupled to the regulated power supply node via their own corresponding inductors. Once activated, the external phase circuits source respective currents to the regulated power supply node via their corresponding inductors.
    Type: Application
    Filed: May 15, 2023
    Publication date: November 16, 2023
    Inventors: Hao Zhou, Sarfraz Shaikh, Jay B. Fletcher, Sanjay Pant, Mark A. Yoshimoto, Vincenzo Bisogno, Shawn Searles
  • Patent number: 11695336
    Abstract: A power management circuit included in a computer system regulates a voltage level of a power supply node used by other circuits in the computer system. The power management circuit includes a control circuit and multiple phase circuits coupled to the regulated power supply node via corresponding inductors. The control circuit selectively activates particular ones of the multiple phase circuits allowing them source respective currents to the regulated power supply node. The control circuit also selectively activates particular ones of other phase circuits that are external to the power management circuit and coupled to the regulated power supply node via their own corresponding inductors. Once activated, the external phase circuits source respective currents to the regulated power supply node via their corresponding inductors.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: July 4, 2023
    Assignee: Apple Inc.
    Inventors: Hao Zhou, Sarfraz Shaikh, Jay B. Fletcher, Sanjay Pant, Mark A. Yoshimoto, Vincenzo Bisogno, Shawn Searles
  • Publication number: 20220399810
    Abstract: A power management circuit included in a computer system regulates a voltage level of a power supply node used by other circuits in the computer system. The power management circuit includes a control circuit and multiple phase circuits coupled to the regulated power supply node via corresponding inductors. The control circuit selectively activates particular ones of the multiple phase circuits allowing them source respective currents to the regulated power supply node. The control circuit also selectively activates particular ones of other phase circuits that are external to the power management circuit and coupled to the regulated power supply node via their own corresponding inductors. Once activated, the external phase circuits source respective currents to the regulated power supply node via their corresponding inductors.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Hao Zhou, Sarfraz Shaikh, Jay B. Fletcher, Sanjay Pant, Mark A. Yoshimoto, Vincenzo Bisogno, Shawn Searles
  • Patent number: 11152808
    Abstract: The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system operates a charging circuit for converting an input voltage from a power source into a set of output voltages for charging the battery and powering a low-voltage subsystem and a high-voltage subsystem in the portable electronic device. Upon detecting the input voltage from the power source and a low-voltage state in the battery during operation of the charging circuit, the system uses a first inductor group in the charging circuit to down-convert the input voltage to a target voltage of the battery that is lower than a voltage requirement of the high-voltage subsystem. The system also uses a second inductor group in the charging circuit to up-convert the target voltage to power the high-voltage subsystem.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: October 19, 2021
    Assignee: Apple Inc.
    Inventors: Jamie Langlinais, Mark A. Yoshimoto, Lin Chen
  • Patent number: 10778026
    Abstract: A battery charger has at least two phases and coupled switches that are controlled using switch mode power supply (SMPS) techniques. One of the phases is part of a buck-boost circuit that includes a high side switch, which is coupled between a near end of the phase and the input, and a low side switch that is coupled between a far end of the phase and ground. The far end of the phase is also coupled to a battery, through a further high side switch. A controller signals the switches into open and closed states so that the buck-boost circuit is operated in buck mode when charging the battery at a low voltage, and in boost mode when charging the battery at a high voltage. Other embodiments are also described and claimed.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 15, 2020
    Assignee: Apple Inc.
    Inventors: Jamie L. Langlinais, Mark A. Yoshimoto
  • Patent number: 10581330
    Abstract: A power conversion circuit providing a regulated output voltage to a load can include a switching regulator with an input configured to be coupled to an input voltage source and an output configured to be coupled to the load. The power conversion circuit can further include a metered charge transfer converter, such as a charge pump or a switched or pulsed current source, having an input configured to be coupled to an input voltage source and having an output configured to be coupled to the load. A controller coupled to the metered charge transfer converter can be configured to operate the metered charge transfer converter to deliver energy to the load responsive to a dip of the regulated output voltage below a threshold caused by an increase in current drawn by the load. The metered charge transfer converter may be located closer to the load than the switching regulator.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 3, 2020
    Assignee: Apple Inc.
    Inventors: Damon Lee, Jamie L. Langlinais, Jonathan M. Audy, Mark A. Yoshimoto, Rajarshi Paul, Talbott M. Houk
  • Patent number: 10560107
    Abstract: Power supply topologies can leverage relatively smaller component sizes while meeting the power requirements of loads. In a first stage, a determination is made as to whether a high current limit is exceeded for a first duration, or whether an average current provided exceeds an average current limit, such that a power supply component (e.g., inductor) is thermally stressed. In either event, a clock frequency is reduced by a first factor. In a second stage, a determination is made as to whether an output voltage drops below a voltage threshold. If so, the clock frequency may be further reduced by a second factor.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 11, 2020
    Assignee: Apple Inc.
    Inventors: Parin Patel, Jamie L. Langlinais, Mark A. Yoshimoto, Rajarshi Paul
  • Publication number: 20190280590
    Abstract: A power conversion circuit providing a regulated output voltage to a load can include a switching regulator with an input configured to be coupled to an input voltage source and an output configured to be coupled to the load. The power conversion circuit can further include a metered charge transfer converter, such as a charge pump or a switched or pulsed current source, having an input configured to be coupled to an input voltage source and having an output configured to be coupled to the load. A controller coupled to the metered charge transfer converter can be configured to operate the metered charge transfer converter to deliver energy to the load responsive to a dip of the regulated output voltage below a threshold caused by an increase in current drawn by the load. The metered charge transfer converter may be located closer to the load than the switching regulator.
    Type: Application
    Filed: June 7, 2018
    Publication date: September 12, 2019
    Inventors: Damon Lee, Jamie L. Langlinais, Jonathan M. Audy, Mark A. Yoshimoto, Rajarshi Paul, Talbott M. Houk
  • Patent number: 10333528
    Abstract: Power supply topologies can leverage relatively smaller component sizes while meeting the power requirements of loads. In a first stage, a determination is made as to whether a high current limit is exceeded for a first duration, or whether an average current provided exceeds an average current limit, such that a power supply component (e.g., inductor) is thermally stressed. In either event, a clock frequency is reduced by a first factor. In a second stage, a determination is made as to whether an output voltage drops below a voltage threshold. If so, the clock frequency may be further reduced by a second factor.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: June 25, 2019
    Assignee: Apple Inc.
    Inventors: Parin Patel, Jamie L. Langlinais, Mark A. Yoshimoto, Rajarshi Paul
  • Patent number: 10305305
    Abstract: The embodiments discussed herein relate to systems, methods, and apparatus for providing a charger capable of adaptively handling a range of power inputs. The charger can selectively activate different control switches within the charger in order to more efficiently use current supplied to the charger. When a low power input is provided to the charger, the charger can reduce the number of active control switches being used to provide a voltage output from the charger. In this way, the capacitance required to toggle the control switches can be reduced. When a high power input is provided to the charger, the number of active control switches can be increased in order to increase a total amount of charge that can be provided from the charger, thereby reducing charge times for batteries.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 28, 2019
    Assignee: Apple Inc.
    Inventors: Mark A. Yoshimoto, Talbott M. Houk, Jamie L. Langlinais
  • Patent number: 10270337
    Abstract: This application relates to a power converter for a computing device. The power converter can maintain an average output current while also allowing the output current to reach a peak current limit for periods of time. The average output current is maintained by enforcing a dynamic current limit on the output current. The dynamic current limit can change over time depending on whether the average output current is above or below an average current threshold. The changes to the dynamic current limit can occur at a rate defined by one or more time constants in order to reduce electromigration and maintain a temperature of the power converter below a predetermined temperature threshold.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: April 23, 2019
    Assignee: Apple Inc.
    Inventors: Jamie L. Langlinais, Mark A. Yoshimoto
  • Publication number: 20180375364
    Abstract: The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system operates a charging circuit for converting an input voltage from a power source into a set of output voltages for charging the battery and powering a low-voltage subsystem and a high-voltage subsystem in the portable electronic device. Upon detecting the input voltage from the power source and a low-voltage state in the battery during operation of the charging circuit, the system uses a first inductor group in the charging circuit to down-convert the input voltage to a target voltage of the battery that is lower than a voltage requirement of the high-voltage subsystem. The system also uses a second inductor group in the charging circuit to up-convert the target voltage to power the high-voltage subsystem.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 27, 2018
    Inventors: Jamie Langlinais, Mark A. Yoshimoto, Lin Chen
  • Patent number: 10128755
    Abstract: A multi-phase switch mode, voltage regulator has a transient mode portion in which a phase control output is coupled to one or more control inputs of one or more switch circuits that conduct inductor current through one or more transient phase inductors, from amongst a number of phase inductors. A slew mode control circuit detects a high slope and then a low slope in the feedback voltage and, in between detection of the high slope and the low slope, pulses the phase control output of the transient mode portion so that the switch circuit that conducts transient phase inductor current adds power to, or sinks power from, the power supply output. Other embodiments are also described.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: November 13, 2018
    Assignee: Apple Inc.
    Inventors: Rajarshi Paul, Parin Patel, Damon Lee, Evaldo Miranda, Jr., Mark A. Yoshimoto, Jamie L. Langlinais, Jonathan M. Audy
  • Patent number: 10075007
    Abstract: The disclosed embodiments provide a system that manages use of a battery in a portable electronic device. During operation, the system operates a charging circuit for converting an input voltage from a power source into a set of output voltages for charging the battery and powering a low-voltage subsystem and a high-voltage subsystem in the portable electronic device. Upon detecting the input voltage from the power source and a low-voltage state in the battery during operation of the charging circuit, the system uses a first inductor group in the charging circuit to down-convert the input voltage to a target voltage of the battery that is lower than a voltage requirement of the high-voltage subsystem. The system also uses a second inductor group in the charging circuit to up-convert the target voltage to power the high-voltage subsystem.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: September 11, 2018
    Assignee: Apple Inc.
    Inventors: Jamie Langlinais, Mark A. Yoshimoto, Lin Chen
  • Publication number: 20180090945
    Abstract: A battery charger has at least two phases and coupled switches that are controlled using switch mode power supply (SMPS) techniques. One of the phases is part of a buck-boost circuit that includes a high side switch, which is coupled between a near end of the phase and the input, and a low side switch that is coupled between a far end of the phase and ground. The far end of the phase is also coupled to a battery, through a further high side switch. A controller signals the switches into open and closed states so that the buck-boost circuit is operated in buck mode when charging the battery at a low voltage, and in boost mode when charging the battery at a high voltage. Other embodiments are also described and claimed.
    Type: Application
    Filed: March 10, 2017
    Publication date: March 29, 2018
    Inventors: Jamie L. Langlinais, Mark A. Yoshimoto
  • Publication number: 20180013347
    Abstract: A multi-phase switch mode, voltage regulator has a transient mode portion in which a phase control output is coupled to one or more control inputs of one or more switch circuits that conduct inductor current through one or more transient phase inductors, from amongst a number of phase inductors. A slew mode control circuit detects a high slope and then a low slope in the feedback voltage and, in between detection of the high slope and the low slope, pulses the phase control output of the transient mode portion so that the switch circuit that conducts transient phase inductor current adds power to, or sinks power from, the power supply output. Other embodiments are also described.
    Type: Application
    Filed: January 30, 2017
    Publication date: January 11, 2018
    Inventors: Rajarshi Paul, Parin Patel, Damon Lee, Evaldo Miranda, JR., Mark A Yoshimoto, Jamie L. Langlinais
  • Publication number: 20180013348
    Abstract: A multi-phase switch mode, voltage regulator has a transient mode portion in which a phase control output is coupled to one or more control inputs of one or more switch circuits that conduct inductor current through one or more transient phase inductors, from amongst a number of phase inductors. A slew mode control circuit detects a high slope and then a low slope in the feedback voltage and, in between detection of the high slope and the low slope, pulses the phase control output of the transient mode portion so that the switch circuit that conducts transient phase inductor current adds power to, or sinks power from, the power supply output. Other embodiments are also described.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 11, 2018
    Inventors: Rajarshi Paul, Parin Patel, Damon Lee, Evaldo Miranda, JR., Mark A. Yoshimoto, Jamie L. Langlinais, Jonathan M. Audy
  • Publication number: 20170063122
    Abstract: The embodiments discussed herein relate to systems, methods, and apparatus for providing a charger capable of adaptively handling a range of power inputs. The charger can selectively activate different control switches within the charger in order to more efficiently use current supplied to the charger. When a low power input is provided to the charger, the charger can reduce the number of active control switches being used to provide a voltage output from the charger. In this way, the capacitance required to toggle the control switches can be reduced. When a high power input is provided to the charger, the number of active control switches can be increased in order to increase a total amount of charge that can be provided from the charger, thereby reducing charge times for batteries.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 2, 2017
    Inventors: Mark A. YOSHIMOTO, Talbott M. HOUK, Jamie L. LANGLINAIS
  • Publication number: 20160352225
    Abstract: This application relates to a power converter for a computing device. The power converter can maintain an average output current while also allowing the output current to reach a peak current limit for periods of time. The average output current is maintained by enforcing a dynamic current limit on the output current. The dynamic current limit can change over time depending on whether the average output current is above or below an average current threshold. The changes to the dynamic current limit can occur at a rate defined by one or more time constants in order to reduce electromigration and maintain a temperature of the power converter below a predetermined temperature threshold.
    Type: Application
    Filed: May 3, 2016
    Publication date: December 1, 2016
    Inventors: Jamie L. LANGLINAIS, Mark A. YOSHIMOTO