Patents by Inventor Mark Akeson

Mark Akeson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100267026
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Application
    Filed: November 25, 2009
    Publication date: October 21, 2010
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson
  • Publication number: 20100035260
    Abstract: The invention herein disclosed provides for devices and methods that can detect and control an individual polymer in a mixture is acted upon by another compound, for example, an enzyme, in a nanopore in the absence of requiring a terminating nucleotide. The devices and methods are also used to determine rapidly (˜>50 Hz) the nucleotide base sequence of a polynucleotide under feedback control or using signals generated by the interactions between the polynucleotide and the nanopore. The invention is of particular use in the fields of drug discovery, molecular biology, structural biology, cell biology, molecular switches, molecular circuits, and molecular computational devices, and the manufacture thereof.
    Type: Application
    Filed: June 26, 2009
    Publication date: February 11, 2010
    Inventors: Felix Olasagasti, Kate Lieberman, Seico Benner, Mark A. Akeson
  • Patent number: 7625706
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: December 1, 2009
    Assignees: Agilent Technologies, Inc., President and Fellows of Harvard College, Regents of the University of California
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson
  • Publication number: 20080102504
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Application
    Filed: July 3, 2007
    Publication date: May 1, 2008
    Inventors: Mark Akeson, Daniel Branton, David Deamer, Jeffrey Sampson
  • Publication number: 20070281329
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Application
    Filed: March 13, 2007
    Publication date: December 6, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Mark Akeson, Daniel Branton, George Church, David Deamer
  • Patent number: 7238485
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 3, 2007
    Assignees: President and Fellows of Harvard College, Regents of the University of California, Agilent Technologies, Inc.
    Inventors: Mark Akeson, Daniel Branton, David W. Deamer, Jeffrey R. Sampson
  • Patent number: 7189503
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 13, 2007
    Assignees: President and Fellows of Harvard College, Regents of the University of California
    Inventors: Mark Akeson, Daniel Branton, George Church, David W. Deamer
  • Patent number: 7060507
    Abstract: Targeted molecular bar codes and methods for using the same are provided. The subject targeted molecular bar codes include a molecular bar code and a member of a specific binding pair, where the specific binding pair member is generally bonded to the bar code through a linking group. The subject molecular bar code may be read during translocation through a single nano-meter scale pore. The subject targeted molecular bar codes find use in a variety of different applications involving analyte detection, such as screening and diagnostic applications.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: June 13, 2006
    Assignee: The Regents of the University of California
    Inventors: Mark Akeson, David W. Deamer, Wenonah Vercoutere, Hugh E. Olsen, Rebecca Braslau, Bakthan Singaram, Derek Steiner, Frank Cappuccio
  • Publication number: 20060063196
    Abstract: Targeted molecular bar codes and methods for using the same are provided. The subject targeted molecular bar codes include a molecular bar code and a member of a specific binding pair, where the specific binding pair member is generally bonded to the bar code through a linking group. The subject molecular bar code may be read during translocation through a single nano-meter scale pore. The subject targeted molecular bar codes find use in a variety of different applications involving analyte detection, such as screening and diagnostic applications.
    Type: Application
    Filed: August 13, 2002
    Publication date: March 23, 2006
    Inventors: Mark Akeson, David Deamer, Wenonah Vercoutere, Hugh Olsen, Rebecca Braslau, Bakthan Singaram, Derek Steiner, Frank Cappuccio
  • Publication number: 20060063171
    Abstract: Systems and methods for analysis of polymers, e.g., polynucleotides, are provided. The systems are capable of analyzing a polymer at a specified rate. One such analysis system includes a structure having a nanopore aperture and a molecular motor, e.g., a polymerase, adjacent the nanopore aperture.
    Type: Application
    Filed: March 23, 2005
    Publication date: March 23, 2006
    Inventors: Mark Akeson, Daniel Branton, David Deamer, Jeffrey Sampson
  • Patent number: 6936433
    Abstract: Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: August 30, 2005
    Assignee: The Regents of the University of California
    Inventors: Mark Akeson, Wenonah Vercoutere, David Haussler, Stephen Winters-Hilt
  • Publication number: 20050053961
    Abstract: The invention relates to a method for detecting a double-stranded region in a nucleic acid by (1) providing two separate, adjacent pools of a medium and a interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage of a single-stranded nucleic acid, but not of a double-stranded nucleic acid, from one pool to the other pool; (2) placing a nucleic acid polymer in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the single-stranded nucleic acid polymer passes through the channel so as to differentiate between nucleotide monomers that are hybridized to another nucleotide monomer before entering the channel and nucleotide monomers that are not hybridized to another nucleotide monomer before entering the channel.
    Type: Application
    Filed: December 18, 2003
    Publication date: March 10, 2005
    Inventors: Mark Akeson, Daniel Branton, Geroge Church, David Deamer
  • Patent number: 6746594
    Abstract: Single-channel thin film devices and methods for using the same are provided. The subject devices comprise cis and trans chambers connected by an electrical communication means. At the cis end of the electrical communication means is a horizontal conical aperture sealed with a thin film that includes a single nanopore or channel. The devices further include a means for applying an electric field between the cis and trans chambers. The subject devices find use in applications in which the ionic current through a nanopore or channel is monitored, where such applications include the characterization of naturally occurring ion channels, the characterization of polymeric compounds, and the like.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: June 8, 2004
    Assignees: The Regents of the University of California, President and Fellows of Harvard College
    Inventors: Mark A. Akeson, David W. Deamer, Daniel Branton
  • Publication number: 20030099951
    Abstract: Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 29, 2003
    Inventors: Mark Akeson, Wenonah A. Vercoutere, David Haussler, Stephen Winters-Hilt
  • Patent number: 6465193
    Abstract: Targeted molecular bar codes and methods for using the same are provided. The subject targeted molecular bar codes include a molecular bar code and a member of a specific binding pair, where the specific binding pair member is generally bonded to the bar code through a linking group. The subject molecular bar code may be read during translocation through a single nano-meter scale pore. The subject targeted molecular bar codes find use in a variety of different applications involving analyte detection, such as screening and diagnostic applications.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: October 15, 2002
    Assignee: The Regents of the University of California
    Inventors: Mark Akeson, David W. Deamer, Wenonah Vercoutere, Hugh E. Olsen, Rebecca Braslau, Bakthan Singaram, Derek Steiner, Frank Cappuccio
  • Publication number: 20020142344
    Abstract: Targeted molecular bar codes and methods for using the same are provided. The subject targeted molecular bar codes include a molecular bar code and a member of a specific binding pair, where the specific binding pair member is generally bonded to the bar code through a linking group. The subject molecular bar code may be read during translocation through a single nano-meter scale pore. The subject targeted molecular bar codes find use in a variety of different applications involving analyte detection, such as screening and diagnostic applications.
    Type: Application
    Filed: December 10, 1999
    Publication date: October 3, 2002
    Inventors: MARK AKESON, DAVID W. DEAMER, WENONAH VERCOUTERE, HUGH E. OLSEN, REBECCA BRASLAU, BAKTHAN SINGARAM, DEREK STEINER, FRANK CAPPUCCUI
  • Publication number: 20020056651
    Abstract: Single-channel thin film devices and methods for using the same are provided. The subject devices comprise cis and trans chambers connected by an electrical communication means. At the cis end of the electrical communication means is a horizontal conical aperture sealed with a thin film that includes a single nanopore or channel. The devices further include a means for applying an electric field between the cis and trans chambers. The subject devices find use in applications in which the ionic current through a nanopore or channel is monitored, where such applications include the characterization of naturally occurring ion channels, the characterization of polymeric compounds, and the like.
    Type: Application
    Filed: June 8, 2001
    Publication date: May 16, 2002
    Inventors: Mark A. Akeson, David W. Deamer, Daniel Braxton
  • Patent number: 6267872
    Abstract: Single-channel thin film devices and methods for using the same are provided. The subject devices comprise cis and trans chambers connected by an electrical communication means. At the cis end of the electrical communication means is a horizontal conical aperture sealed with a thin film that includes a single nanopore or channel. The devices further include a means for applying an electric field between the cis and trans chambers. The subject devices find use in applications in which the ionic current through a nanopore or channel is monitored where such applications include the characterization of naturally occurring ion channels, the characterization of polymeric compounds, and the like.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: July 31, 2001
    Assignee: The Regents of the University of California
    Inventors: Mark A. Akeson, David W. Deamer, Daniel Branton
  • Patent number: 6015714
    Abstract: A method for sequencing a nucleic acid polymer by (1) providing two separate, adjacent pools of a medium and an interface between the two pools, the interface having a channel so dimensioned as to allow sequential monomer-by-monomer passage from one pool to the other pool of only one nucleic acid polymer at a time; (2) placing the nucleic acid polymer to be sequenced in one of the two pools; and (3) taking measurements as each of the nucleotide monomers of the nucleic acid polymer passes through the channel so as to sequence the nucleic acid polymer.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: January 18, 2000
    Assignees: The United States of America as represented by the Secretary of Commerce, The Regents of the University of California
    Inventors: Richard Baldarelli, Daniel Branton, George Church, David W. Deamer, Mark Akeson, John Kasianowicz