Patents by Inventor Mark Alexander Shand

Mark Alexander Shand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220308191
    Abstract: A computing system may operate a LIDAR device to emit and detect light pulses in accordance with a time sequence including standard detection period(s) that establish a nominal detection range for the LIDAR device and extended detection period(s) having durations longer than those of the standard detection period(s). The system may then make a determination that the LIDAR detected return light pulse(s) during extended detection period(s) that correspond to particular emitted light pulse(s). Responsively, the computing system may determine that the detected return light pulse(s) have detection times relative to corresponding emission times of particular emitted light pulse(s) that are indicative of one or more ranges. Given this, the computing system may make a further determination of whether or not the one or more ranges indicate that an object is positioned outside of the nominal detection range, and may then engage in object detection in accordance with the further determination.
    Type: Application
    Filed: June 14, 2022
    Publication date: September 29, 2022
    Inventor: Mark Alexander Shand
  • Patent number: 11415680
    Abstract: A computing system may operate a LIDAR device to emit and detect light pulses in accordance with a time sequence including standard detection period(s) that establish a nominal detection range for the LIDAR device and extended detection period(s) having durations longer than those of the standard detection period(s). The system may then make a determination that the LIDAR detected return light pulse(s) during extended detection period(s) that correspond to particular emitted light pulse(s). Responsively, the computing system may determine that the detected return light pulse(s) have detection times relative to corresponding emission times of particular emitted light pulse(s) that are indicative of one or more ranges. Given this, the computing system may make a further determination of whether or not the one or more ranges indicate that an object is positioned outside of the nominal detection range, and may then engage in object detection in accordance with the further determination.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: August 16, 2022
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20220236377
    Abstract: The present disclosure relates to systems and methods that facilitate light detection and ranging operations. An example method includes determining, for at least one light-emitter device of a plurality of light-emitter devices, a light pulse schedule. The plurality of light-emitter devices is operable to emit light along a plurality of emission vectors. The light pulse schedule is based on a respective emission vector of the at least one light-emitter device and a three-dimensional map of an external environment. The light pulse schedule includes at least one light pulse parameter and a listening window duration. The method also includes causing the at least one light-emitter device of the plurality of light-emitter devices to emit a light pulse according to the light pulse schedule. The light pulse interacts with an external environment.
    Type: Application
    Filed: April 19, 2022
    Publication date: July 28, 2022
    Inventor: Mark Alexander Shand
  • Publication number: 20220187448
    Abstract: Computing devices, systems, and methods described in various embodiments herein may relate to a light detection and ranging (lidar) system. An example computing device could include a controller having at least one processor and at least one memory. The at least one processor is configured to execute program instructions stored in the at least one memory so as to carry out operations. The operations include receiving information identifying an environmental condition surrounding a vehicle, the environmental condition being at least one of fog, mist, snow, dust, or rain. The operations also include determining a range of interest within a field of view of the lidar system based on the received information. The operations also include adjusting at least one of: a return light detection time period, sampling rate, or filtering threshold, for at least a portion of the field of view based on the determined range of interest.
    Type: Application
    Filed: July 15, 2021
    Publication date: June 16, 2022
    Inventors: Mark Alexander Shand, Lucas Peeters, Rui Wu, Blaise Gassend, Stephen Osborn, Paul Karplus, Georges Goetz
  • Patent number: 11340339
    Abstract: The present disclosure relates to systems and methods that facilitate light detection and ranging operations. An example method includes determining, for at least one light-emitter device of a plurality of light-emitter devices, a light pulse schedule. The plurality of light-emitter devices is operable to emit light along a plurality of emission vectors. The light pulse schedule is based on a respective emission vector of the at least one light-emitter device and a three-dimensional map of an external environment. The light pulse schedule includes at least one light pulse parameter and a listening window duration. The method also includes causing the at least one light-emitter device of the plurality of light-emitter devices to emit a light pulse according to the light pulse schedule. The light pulse interacts with an external environment.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: May 24, 2022
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20220014270
    Abstract: Systems and methods for performing operations based on LIDAR communications are described. An example device may include one or more processors and a memory coupled to the one or more processors. The memory includes instructions that, when executed by the one or more processors, cause the device to receive data associated with a modulated optical signal emitted by a transmitter of a first LIDAR device and received by a receiver of a second LIDAR device coupled to a vehicle and the device, generate a rendering of an environment of the vehicle based on information from one or more LIDAR devices coupled to the vehicle, and update the rendering based on the received data. Updating the rendering includes updating an object rendering of an object in the environment of the vehicle. The instructions further cause the device to provide the updated rendering for display on a display coupled to the vehicle.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Inventors: Salil Shree Pandit, Mark Alexander Shand, Reed Gerard Alexander Morse
  • Publication number: 20210405155
    Abstract: Example embodiments relate to selective deactivation of light emitters for interference mitigation in light detection and ranging (lidar) devices. An example method includes deactivating one or more light emitters within a lidar device during a firing cycle. The method also includes identifying whether interference is influencing measurements made by the lidar device. Identifying whether interference is influencing measurements made by the lidar device includes determining, for each light detector of the lidar device that is associated with the one or more light emitters deactivated during the firing cycle, whether a light signal was detected during the firing cycle.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventor: Mark Alexander Shand
  • Publication number: 20210389763
    Abstract: An example method involves detecting a sensor-testing trigger. Detecting the sensor-testing trigger may comprise determining that a vehicle is within a threshold distance to a target in an environment of the vehicle. The method also involves obtaining sensor data collected by a sensor of the vehicle after the detection of the sensor-testing trigger. The sensor data is indicative of a scan of a region of the environment that includes the target. The method also involves comparing the sensor data with previously-collected sensor data indicating detection of the target by one or more sensors during one or more previous scans of the environment. The method also involves generating performance metrics related to the sensor of the vehicle based on the comparison.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephanie McArthur, Mark Alexander Shand, Colin Braley
  • Publication number: 20210346556
    Abstract: Aspects of the disclosure relate cleaning systems for cleaning cabin air and interior surfaces of a vehicle. For instance, a cleaning system may include a surface cleaning device including a UVC light source. In addition, a request for confirmation that the vehicle may not be occupied may be sent to a remote computing device. In response to the request, a signal indicating whether or not the vehicle is occupied may be received. The surface cleaning device may then be activated based on the signal.
    Type: Application
    Filed: March 16, 2021
    Publication date: November 11, 2021
    Inventors: Roman Manka, Min Wang, Timothy Willis, Mark Alexander Shand
  • Patent number: 11153010
    Abstract: Systems and methods for performing operations based on LIDAR communications are described. An example device may include one or more processors and a memory coupled to the one or more processors. The memory includes instructions that, when executed by the one or more processors, cause the device to receive data associated with a modulated optical signal emitted by a transmitter of a first LIDAR device and received by a receiver of a second LIDAR device coupled to a vehicle and the device, generate a rendering of an environment of the vehicle based on information from one or more LIDAR devices coupled to the vehicle, and update the rendering based on the received data. Updating the rendering includes updating an object rendering of an object in the environment of the vehicle. The instructions further cause the device to provide the updated rendering for display on a display coupled to the vehicle.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 19, 2021
    Assignee: Waymo LLC
    Inventors: Salil Shree Pandit, Mark Alexander Shand, Reed Gerard Alexander Morse
  • Patent number: 11119478
    Abstract: An example method involves detecting a sensor-testing trigger. Detecting the sensor-testing trigger may comprise determining that a vehicle is within a threshold distance to a target in an environment of the vehicle. The method also involves obtaining sensor data collected by a sensor of the vehicle after the detection of the sensor-testing trigger. The sensor data is indicative of a scan of a region of the environment that includes the target. The method also involves comparing the sensor data with previously-collected sensor data indicating detection of the target by one or more sensors during one or more previous scans of the environment. The method also involves generating performance metrics related to the sensor of the vehicle based on the comparison.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 14, 2021
    Assignee: Waymo LLC
    Inventors: Stephanie McArthur, Mark Alexander Shand, Colin Braley
  • Publication number: 20210270967
    Abstract: Computing devices, systems, and methods described in various embodiments herein may relate to light detection and ranging (LIDAR or lidar) systems. An example computing device could include a controller having at least one processor and at least one memory. The at least one processor is configured to execute program instructions stored in the at least one memory so as to carry out operations. The operations include receiving information indicative of transmit light emitted from a lidar system along a light-emission axis. The operations also include determining, based on the received information, a maximum instrumented distance. The maximum instrumented distance includes a known unobstructed region defined by a ray segment extending between the lidar system and a point along the light-emission axis.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 2, 2021
    Inventors: Mark Alexander Shand, Ming Zou
  • Publication number: 20210203864
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 1, 2021
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Patent number: 10939057
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Waymo LLC
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Publication number: 20210006332
    Abstract: Systems and methods for performing operations based on LIDAR communications are described. An example device may include one or more processors and a memory coupled to the one or more processors. The memory includes instructions that, when executed by the one or more processors, cause the device to receive data associated with a modulated optical signal emitted by a transmitter of a first LIDAR device and received by a receiver of a second LIDAR device coupled to a vehicle and the device, generate a rendering of an environment of the vehicle based on information from one or more LIDAR devices coupled to the vehicle, and update the rendering based on the received data. Updating the rendering includes updating an object rendering of an object in the environment of the vehicle. The instructions further cause the device to provide the updated rendering for display on a display coupled to the vehicle.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 7, 2021
    Inventors: Salil Shree Pandit, Mark Alexander Shand, Reed Gerard Alexander Morse
  • Publication number: 20200404197
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 24, 2020
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Publication number: 20200371235
    Abstract: A computing system may operate a LIDAR device to emit light pulses in accordance with a time sequence including a time-varying dither. The system may then determine that the LIDAR detected return light pulses during corresponding detection periods for each of two or more emitted light pulses. Responsively, the system may determine that the detected return light pulses have (i) detection times relative to corresponding emission times of a plurality of first emitted light pulses that are indicative of a first set of ranges and (ii) detection times relative to corresponding emission times of a plurality of second emitted light pulses that are indicative of a second set of ranges. Given this, the system may select between using the first set of ranges as a basis for object detection and using the second set of ranges as a basis for object detection, and may then engage in object detection accordingly.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventor: Mark Alexander Shand
  • Patent number: 10754033
    Abstract: A computing system may operate a LIDAR device to emit light pulses in accordance with a time sequence including a time-varying dither. The system may then determine that the LIDAR detected return light pulses during corresponding detection periods for each of two or more emitted light pulses. Responsively, the system may determine that the detected return light pulses have (i) detection times relative to corresponding emission times of a plurality of first emitted light pulses that are indicative of a first set of ranges and (ii) detection times relative to corresponding emission times of a plurality of second emitted light pulses that are indicative of a second set of ranges. Given this, the system may select between using the first set of ranges as a basis for object detection and using the second set of ranges as a basis for object detection, and may then engage in object detection accordingly.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 25, 2020
    Assignee: Waymo LLC
    Inventor: Mark Alexander Shand
  • Publication number: 20200241121
    Abstract: A computing system may operate a LIDAR device to emit and detect light pulses in accordance with a time sequence including standard detection period(s) that establish a nominal detection range for the LIDAR device and extended detection period(s) having durations longer than those of the standard detection period(s). The system may then make a determination that the LIDAR detected return light pulse(s) during extended detection period(s) that correspond to particular emitted light pulse(s). Responsively, the computing system may determine that the detected return light pulse(s) have detection times relative to corresponding emission times of particular emitted light pulse(s) that are indicative of one or more ranges. Given this, the computing system may make a further determination of whether or not the one or more ranges indicate that an object is positioned outside of the nominal detection range, and may then engage in object detection in accordance with the further determination.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventor: Mark Alexander Shand
  • Publication number: 20200142033
    Abstract: Systems and methods described herein relate to LIDAR systems and their operation. An example method includes partitioning a plurality of light-emitter devices into a plurality of groups. Each light-emitter device is associated with a given group of the plurality of groups. The method also includes selecting a group from the plurality of groups according to a predetermined group order and selecting one or more light-emitter devices from the plurality of light-emitter devices of the selected group according to a firing order. The method yet further includes, at a predetermined shot dither time, causing the selected light-emitter device to emit at least one light pulse. The predetermined shot dither time is based on a shot dither schedule. The method may additionally include repeating the method to provide a complete scan in which each light-emitter device of the plurality of light-emitter devices has emitted at least one light pulse.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 7, 2020
    Inventor: Mark Alexander Shand