Patents by Inventor Mark Allan Shill
Mark Allan Shill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11669120Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: GrantFiled: June 16, 2022Date of Patent: June 6, 2023Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan Shill, Binan Wang
-
Patent number: 11616495Abstract: Inter-integrated circuit input circuitry includes a pull-up current circuit and an input circuit. The input circuit includes an output inverter, an input inverter, and a pull-up circuit. The pull-up circuit is coupled to an input of the input inverter, and includes a pull-up transistor and a cascode transistor. The pull-up transistor is coupled to the input of the input inverter. The cascode transistor is coupled to the pull-up current circuit and the pull-up transistor, and configured to isolate the pull-up transistor from capacitance of a conductor coupled to the pull-up current circuit and the input circuit.Type: GrantFiled: February 26, 2021Date of Patent: March 28, 2023Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Mark Allan Shill
-
Publication number: 20220308616Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: ApplicationFiled: June 16, 2022Publication date: September 29, 2022Applicant: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan SHILL, Binan WANG
-
Patent number: 11409318Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: GrantFiled: June 15, 2021Date of Patent: August 9, 2022Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan Shill, Binan Wang
-
Publication number: 20210311519Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: ApplicationFiled: June 15, 2021Publication date: October 7, 2021Inventors: Mark Allan SHILL, Binan WANG
-
Patent number: 11068010Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: GrantFiled: December 20, 2019Date of Patent: July 20, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan Shill, Binan Wang
-
Publication number: 20210191445Abstract: A current mirror circuit includes a current output terminal, a first transistor, a second transistor, and a digital-to-analog converter (DAC). The first transistor includes a first terminal coupled to a power rail, a second terminal coupled to a current source, and a third terminal coupled to the current source. The second transistor includes a first terminal coupled to the power rail, a second terminal coupled to the second terminal of the first transistor, and a third terminal coupled to the current output terminal. The DAC includes an output terminal coupled to the second transistor.Type: ApplicationFiled: December 20, 2019Publication date: June 24, 2021Inventors: Mark Allan SHILL, Binan WANG
-
Publication number: 20210184658Abstract: Inter-integrated circuit input circuitry includes a pull-up current circuit and an input circuit. The input circuit includes an output inverter, an input inverter, and a pull-up circuit. The pull-up circuit is coupled to an input of the input inverter, and includes a pull-up transistor and a cascode transistor. The pull-up transistor is coupled to the input of the input inverter. The cascode transistor is coupled to the pull-up current circuit and the pull-up transistor, and configured to isolate the pull-up transistor from capacitance of a conductor coupled to the pull-up current circuit and the input circuit.Type: ApplicationFiled: February 26, 2021Publication date: June 17, 2021Inventor: Mark Allan SHILL
-
Patent number: 10965277Abstract: Inter-integrated circuit input circuitry includes a pull-up current circuit and an input circuit. The input circuit includes an output inverter, an input inverter, and a pull-up circuit. The pull-up circuit is coupled to an input of the input inverter, and includes a pull-up transistor and a cascode transistor. The pull-up transistor is coupled to the input of the input inverter. The cascode transistor is coupled to the pull-up current circuit and the pull-up transistor, and configured to isolate the pull-up transistor from capacitance of a conductor coupled to the pull-up current circuit and the input circuit.Type: GrantFiled: November 21, 2019Date of Patent: March 30, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Mark Allan Shill
-
Patent number: 9692433Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.Type: GrantFiled: August 3, 2016Date of Patent: June 27, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan Shill, Binan Wang
-
Patent number: 9634686Abstract: A digital-to-analog conversion (DAC) circuit has a resistor ladder circuit controlled by high order bits and a resistor string circuit controlled by low order bits. The resistor ladder circuit includes a stem resistor and a branch resistor. The stem resistor has a stem resistance, and the branch resistor has a branch resistance that is substantially equal to two times of the stem resistance. The resistor string circuit includes a string current source, a string resistor, and a bridge resistor. The string current source is configured to generate a string current that is based on a ratio of a reference voltage divided by a predetermined resistance. The string resistor has a string resistance that corresponds to the predetermined resistance, and it is configured to selectively receive the string current based on a selection signal decoded from the low order bits.Type: GrantFiled: June 22, 2016Date of Patent: April 25, 2017Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Mark Allan Shill
-
Publication number: 20160344399Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.Type: ApplicationFiled: August 3, 2016Publication date: November 24, 2016Inventors: Mark Allan Shill, Binan Wang
-
Publication number: 20160301421Abstract: A digital-to-analog conversion (DAC) circuit has a resistor ladder circuit controlled by high order bits and a resistor string circuit controlled by low order bits. The resistor ladder circuit includes a stem resistor and a branch resistor. The stem resistor has a stem resistance, and the branch resistor has a branch resistance that is substantially equal to two times of the stem resistance. The resistor string circuit includes a string current source, a string resistor, and a bridge resistor. The string current source is configured to generate a string current that is based on a ratio of a reference voltage divided by a predetermined resistance. The string resistor has a string resistance that corresponds to the predetermined resistance, and it is configured to selectively receive the string current based on a selection signal decoded from the low order bits.Type: ApplicationFiled: June 22, 2016Publication date: October 13, 2016Inventor: Mark Allan Shill
-
Patent number: 9444478Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.Type: GrantFiled: September 9, 2015Date of Patent: September 13, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Mark Allan Shill, Binan Wang
-
Patent number: 9397688Abstract: A digital-to-analog conversion (DAC) circuit has a resistor ladder circuit controlled by high order bits and a resistor string circuit controlled by low order bits. The resistor ladder circuit includes a stem resistor and a branch resistor. The stem resistor has a stem resistance, and the branch resistor has a branch resistance that is substantially equal to two times of the stem resistance. The resistor string circuit includes a string current source, a string resistor, and a bridge resistor. The string current source is configured to generate a string current that is based on a ratio of a reference voltage divided by a predetermined resistance. The string resistor has a string resistance that corresponds to the predetermined resistance, and it is configured to selectively receive the string current based on a selection signal decoded from the low order bits.Type: GrantFiled: September 9, 2015Date of Patent: July 19, 2016Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Mark Allan Shill
-
Publication number: 20160072519Abstract: A digital-to-analog conversion (DAC) circuit has a resistor ladder circuit controlled by high order bits and a resistor string circuit controlled by low order bits. The resistor ladder circuit includes a stem resistor and a branch resistor. The stem resistor has a stem resistance, and the branch resistor has a branch resistance that is substantially equal to two times of the stem resistance. The resistor string circuit includes a string current source, a string resistor, and a bridge resistor. The string current source is configured to generate a string current that is based on a ratio of a reference voltage divided by a predetermined resistance. The string resistor has a string resistance that corresponds to the predetermined resistance, and it is configured to selectively receive the string current based on a selection signal decoded from the low order bits.Type: ApplicationFiled: September 9, 2015Publication date: March 10, 2016Inventor: Mark Allan Shill
-
Publication number: 20160072516Abstract: A voltage regulation system provides a relatively stable voltage source without introducing the typical costs of a ground buffer. The disclosed voltage regulation system includes a voltage regulator that is operative to detect a change of the load current and regulate a current bypass mechanism to stabilize a total supply current. For example, the voltage regulator includes a current sensor and a current compensation circuit. The current sensor is configure to generate a current compensation signal based on the load current change, whereas the current compensation circuit is configured to adjust a bypass current in response to the current compensation signal. As a result, the bypass current dynamically compensates the load current change such that the ground voltage of a variable load becomes relatively stable over a range of load currents.Type: ApplicationFiled: September 9, 2015Publication date: March 10, 2016Inventors: Mark Allan Shill, Binan Wang
-
Patent number: 7088274Abstract: An improved circuit is provided that buffers the output of a DAC while improving the bandwidth and linearity of the circuit. A DAC comprises an output signal of a switched DAC circuit coupled to an inverting node of an output buffer configured as a difference amplifier, while a non-inverting node of the difference amplifier is coupled to a fixed reference potential. As a result, the difference amplifier buffers the output of the switched DAC circuit while permitting the use of N-type input stages in the amplifier, which can enhance the bandwidth capability of the circuit.Type: GrantFiled: April 9, 2002Date of Patent: August 8, 2006Assignee: Texas Instruments IncorporatedInventor: Mark Allan Shill
-
Publication number: 20030189506Abstract: An improved circuit is provided that buffers the output of a DAC while improving the bandwidth and linearity of the circuit. A DAC comprises an output signal of a switched DAC circuit coupled to an inverting node of an output buffer configured as a difference amplifier, while a non-inverting node of the difference amplifier is coupled to a fixed reference potential. As a result, the difference amplifier buffers the output of the switched DAC circuit while permitting the use of N-type input stages in the amplifier, which can enhance the bandwidth capability of the circuit.Type: ApplicationFiled: April 9, 2002Publication date: October 9, 2003Inventor: Mark Allan Shill